
C-PLOT™

Scientific Graphics
and

Data Analysis Software

USER REFERENCE MANUAL

© 1986-1998
by Certified Scientific Software. All rights reserved.

This is version 2.1 of the C-PLOT documentation, printed January 12, 1999,
describing features of release 4.0 of the software.

C-PLOT is a trademark of Certified Scientific Software.
All other trademarks and registered trademarks are the property of their re-
spective owners.

The material in this manual is furnished for informational use only, is subject to
change without notice and should not be construed as a commitment by Certi-
fied Scientific Software. Certified Scientific Software assumes no responsibility
or liability for any errors or inaccuracies that may appear in this manual. The
software described in this manual is furnished under license and may only be
used or copied in accordance with the terms of such license.

C-PLOT

Scientific Graphics
and

Data Analysis Software

Certified Scientific Software
PO Box 390640 Cambridge, Massachusetts 02139 (617) 576-1610

FAX: (617) 497-4242 cplot@certif.com

http://www.certif.com

Table Of Contents

Chapter 1 Introduction .. 1
A general description of the program and a summary of commands.

Chapter 2 Utility commands ... 7
Commands that interact with the operating system and instructions for
using the help command.
ex exit program .. 7
h get on-line help .. 7
cd change directory .. 8
u create a UNIX subshell .. 9

Chapter 3 Getting and saving data .. 11
Commands used to enter data points from the keyboard, files or a digi-
tizer and the command used to save data points to files. Instructions
for using error bars and for modifying data using C-PLOT’s interactive
editor.
gd get data .. 11
sa save current data .. 19
eb select error-bar mode .. 19

Chapter 4 Using PseudoGraphics .. 21
Commands for producing fast plots on non-graphic video terminals.
v draw PseudoGraphics plot ... 21
va draw PseudoGraphics axes .. 21
vp draw PseudoGraphics points .. 22
vb select inclusion of PseudoGraphics axes .. 22
vt select automatic drawing of PseudoGraphics 22
er erase the video screen ... 22
gr select PseudoGraphics terminal type .. 23

Chapter 5 Designing the Plot ... 25
Commands that format the plot, including selecting the plotting sym-
bol, plot window and axis type. Instructions for 3D plotting.
2d select 2D mode .. 25
3d select 3D mode .. 26

iv

lc line-control mode .. 26
ra, ro select axis range, select range options .. 27
np reset axes for new points .. 29
re reset program for new plot ... 30
tu turn plot ... 31
ty select type of plot .. 31
st select plot style .. 34
sw swivel plot ... 35
wi select plot window ... 35
lo locate plot .. 37
bo select 3D box ratios ... 38
vi select 3D plot view .. 38
tw tweak plot orientation .. 39

Chapter 6 Adding Text ... 41
Commands for formatting text for labels, key, title and annotation. Use
of scientific, mathematical and foreign characters.
cs set character sizes ... 41
ft select font .. 42
sy select plotting symbol ... 44
gk enter symbols and text for plot key .. 45
tx enter text for plot labels and title .. 46
se set parameters .. 47
yg set gap between y-axis and label .. 49

Chapter 7 Drawing the Plot .. 53
Commands for drawing the plot on graphics-filter devices and pen plot-
ters.
p, pz, z, zz draw complete plot ... 53
pa, za draw axes .. 54
pp, zp draw points ... 54
pb, zb draw error bars ... 54
pl, zl draw axis labels .. 55
pt, zt draw title ... 55
pn, zn annotate .. 55
pk, zk draw key .. 56
pd, zd place date in corner .. 57

v

Chapter 8 More Plotter Commands .. 59
Special commands for initializing the pen plotter, selecting pens and
setting the pen drawing speed.
in open and initialize pen plotter ... 59
rp release pen plotter .. 60
p# select pen ... 61
pv select pen velocity ... 61
pw don’t move pen off page .. 62
px, ps move pen off page ... 62

Chapter 9 Graphics Filter Commands ... 63
Special commands for initializing, opening and closing graphics filters,
erasing plot material and controlling the echoing of commands.
zi initialize graphics filter .. 63
zf select filter ... 65
sc select filter scaling factors .. 65
z# select filter line style ... 66
ze erase old plot ... 66
zE erase current window ... 66
zq don’t write text to screen .. 66
zw don’t close filter yet ... 67
zx close filter .. 68
zs close filter, synchronous .. 68

Chapter 10 Command Files .. 73
Commands to create and use command files that let C-PLOT run in
batch mode.
do take commands from a file ... 73
mk make a command file .. 76
em end making a command file ... 77
sf save current format .. 77
ch change target of drawing commands ... 77
w wait for user to enter <return> .. 78

vi

Chapter 11 Using User Functions ... 81
Commands to create user functions that generate new data or manipu-
late current data according to your specifications.
fn, f# run a user function ... 84

Chapter 12 Fitting ... 87
The nonlinear fitting package and how to incorporate your fitting equa-
tion.

Appendix A Setting up the Site ...113
Installing C-PLOT; setting up site files and user files.

Appendix B Plot Fonts ...121
Samples of C-PLOT’s built-in fonts.

Appendix C Standard User Functions ...127
The standard user functions included with the C-PLOT package.

Appendix D Demo Files ..145
The demonstration files included with C-PLOT.

Appendix E Writing User Functions ...165
Instructions for writing your own user functions.

vii

viii

Cha pter 1 Introduction

Certified Scientific Software’s C-PLOT offers scientific graphics and data analysis
for UNIX operating systems. The package provides publication-quality 2D and
3D graphs, sophisticated fitting and modeling, immediate plotting of real-time
data, and integration of these functions with the user’s own data collection and
analysis routines. Once a plot or procedure is developed interactively, C-PLOT
can be run in batch mode using easy-to-program command files. C-PLOT sup-
ports most popular output devices, including X Windows and PostScript (both in
color) and HP-GL plotters.

Analytical tools

C-PLOT’s built-in analytical tools include a function for fast Fourier transforms,
a cubic spline interpolator, a histogram-maker, a contour plot generator and a
general-purpose data calculator. A special user function will filter data through
any existing UNIX utility.

Fitting

The package’s most powerful built-in function is its nonlinear least-squares fit-
ting package. An interactive program in its own right, the fitting package is
closely integrated with the plot program, letting you readily see graphic displays
of the results of your fits. Just as with the ordinary user functions, you need
only insert the code describing your model equation into the prototype provided.

User functions

The package’s user functions are separate processes that communicate directly
with the plot program, allowing you to create your own data collection and pro-
cessing routines and integrate them into C-PLOT. The package includes over-
head modules and prototype C-modules containing most of the code that com-
prises these programs. C-PLOT will create files containing the prototype subrou-
tines and invoke your favorite editor. After you add your code, it will compile
and run the function. Your role may be as simple as entering the C-language
expression that gives y as a function of x, or it may involve writing many lines of
code, depending on your need.

Introduction 1

Da ta

C-PLOT takes data from binary and ASCII files or from the keyboard, it can digi-
tize data from an HP-GL plotter or it can receive data through the user function
facility. It will plot an unlimited number of points, and overlays of additional
plots, text or formulas may be placed anywhere on the page and scaled to any
size.

Ba tch mode

Besides its interactive mode, in which commands are typed at the keyboard,
C-PLOT can take input from command files — ASCII files containing a command
script entered just as it would be typed at the keyboard. Parameters can be
passed to command files using a simple argument-substitution scheme, and
command files can be nested up to four deep. C-PLOT can be invoked as a back-
ground process, taking its input entirely from command files — plotting and
analyzing your data as you perform other tasks.

Gra phics

For high-resolution graphics, C-PLOT produces a device-independent output
stream that is directed through device-dependent filter programs. The C-PLOT
package includes filter programs for many popular graphics terminals, laser
printers and other output devices; if a graphics filter doesn’t exist already for
your graphics device, it is relatively simple to build one by adapting the existing
C-language modules and libraries included in the plotting package.

Apart from the filter output stream is C-PLOT’s bidirectional communication
with an HP-GL plotter over a serial or GPIB interface. You can set the size and
position of the plot axis and the position of plot annotations through the pro-
gram or with the plotter’s front-panel controls.

C-PLOT’s fast PseudoGraphics will work on almost any video terminal that can
run a UNIX visual editor. You can use PseudoGraphics, for example, to view the
trend or scaling of your plot before sending it out to a high-resolution device.
PseudoGraphics can be used with C-PLOT’s data editor to delete, insert and mod-
ify points as they are displayed on the video screen.

2 Chapter 1

Te xt

C-PLOT text formatting shares many of the control sequences of troff, the stan-
dard UNIX text formatter. The C-PLOT character set includes all the printing
ASCII characters, all the Greek letters and more than 90 other math, foreign and
special characters. You can choose from 28 special built-in symbols and 7 line
types for plotting your points, or you can use any of the other characters as a
symbol.

Eight type fonts are included. The default font is the lowest resolution and the
fastest to draw. The alternate fonts are of increasing detail and complexity,
allowing you to choose the most appropriate font for the size of your plot, the
resolution of your display device and the required aesthetics. With each font,
you can independently control the height, width and slant of text.

Help and demos

The C-PLOT package includes access to on-line help files that provide concise
summaries of all the commands. C-PLOT’s help utility will format the files on
the fly to fit whatever terminal screens and workstation windows might be in
use. The package includes nroff/troff macros and a Makefile to aid in producing
hard copies of the help material. Demonstration command files also are
included that show off many of the program’s capabilities.

Commands

All C-PLOT commands, listed on the next two pages, are one- or two-letter
mnemonics. Commands and parameters are shown in courier type. Italic
parameters are to be replaced with the appropriate characters for the desired
instruction. Optional parameters appear in square brackets following the
mnemonics. When several parameters are shown separated by vertical lines,
you use only one of them with the command. For commands that simply indi-
cate options, consult the detailed command description for an explanation of the
syntax.

Introduction 3

Command Description Page

2d Select 2D mode 25
3d Select 3D mode 26
bo [x|. y|. z|.] Set 3D box ratios 38
cd [direc] Change directory 8
ch [p|z|0] Change target of drawing cmds 77
cs [options] Set character sizes 41
do [cmdfile|.] Take commands from a file 73
eb [x|y|z] [0|1] [?] Select error-bar mode 19
em End making a command file 77
er Erase the video screen 22
ex Exit program 7
fn [options] Run user function #1 84
f# [options] Run user function 1 to 8 84
ft [#] Select font 42
gd [options] Get data 11
gk Enter symbols and text for key 45
gr [term] [char_set] Select PseudoGraphics terminal 23
h [command] Get on-line help 7
in [m] [dev] [baud] Open and initialize pen plotter 59
lc [0|1] Select line-control mode 26
lo [llx lly urx ury] Locate plot 37
mk cmdfile Make a command file 76
np [x][y][z] Reset axes for new points 29
p Draw complete plot on the plotter 53
p# Select pen (# is an integer) 61
pa Draw axes on the plotter 54
pb Draw error bars on the plotter 54
pd Draw date in corner of plot 57
pk [options] Draw key on the plotter 56
pl Draw labels on the plotter 55
pn [options] Draw annotation text on the plotter 55
pp Draw points on the plotter 54
pt Draw title on the plotter 55
pv [velocity] Select pen velocity 61
pw Don’t move pen off page 62
px Move pen off page 62
pz Draw complete plot on the plotter 53
ra [x][y][z] [ranges] Select axis range 27
re Reset program for new plot 30
ro [x][y][z] select options for axis range 27
rp Release pen plotter 60
sa[[-b] [file [a|w]] Save current data 19

4 Chapter 1

Command Description Page

sc [h v] Select filter scaling factors 65
se [options] Set parameters 47
sf [filename] Save current format 77
st [code] Select plot style 34
sw [angle] Swivel plot 35
sy [char] Select plotting symbol 44
tu [0|1] Turn plot 31
tw Tweak plot orientation 39
tx [options] Enter text for plot labels and title 46
ty [options] Select type of plot 31
u [cmd] Create a UNIX subshell 9
v Draw PseudoGraphics plot 21
va Draw PseudoGraphics axes 21
vb [0|1] PseudoGraphics axes inclusion 22
vi [x|. y|. z|.] [dist] Set 3D view point 38
vp Draw PseudoGraphics points 22
vt [0|1] PseudoGraphics auto. drawing 22
w Wait for user to enter <return> 78
wi [options] Select size, place of plot window 35
yg [0|#] Select gap between y-axis, label 49
z Draw complete plot on filter 53
z# Select filter line style 66
za Draw axes on filter plot 54
zb Draw error bars on filter plot 54
zd Draw date in corner of filter plot 57
ze Erase old plot 66
zE Erase current window 66
zf Select filter 65
zf# Select filter 1 to 8 65
zi [filter] [options] Initialize graphics filter 63
zk [h v] Draw key on filter plot 56
zl Draw labels on filter plot 55
zn [h v] [file] Draw annotation text on filter plot 55
zp Draw points on filter plot 54
zq Don’t write text to screen 66
zs Close filter, synchronous 68
zt Draw title on filter plot 55
zw Don’t close filter yet 67
zx Close filter 68
zz Draw complete plot on filter 53

Introduction 5

6 Chapter 1

Cha pter 2 Utility commands

In this chapter you will find instructions for:

interacting with the operating system
accessing on-line help

Commands covered

ex exit program
h get on-line help
cd change directory
u create a UNIX subshell

ex exit program
terminates C-PLOT

ex

When ex is entered in interactive mode, a prompt will ask if you really want to
leave the plot program. Pressing <return> will take you out of C-PLOT. If you
enter any character other than y , Y or 1 , you will stay in C-PLOT. You also may
exit the program by typing ˆD at the PLOT-> prompt, in which case you will not
be asked for confirmation.

When running from a command file (see Chapter 10), ex does not require confir-
mation.

h get on-line help
gives access to on-line information about C-PLOT’s commands and functions.

h
or
h topic

Enter h with no parameters to display a listing of all C-PLOT help topics. When
h and the desired subject are entered, a help file named topic will be formatted
to your screen size and displayed. Type h cmds for a list of C-PLOT’s commands.

Help files reside in $CPLOTHOME/help. If topic includes a / character, the spec-
ified path (absolute or relative) is used to find the file.

Utility commands 7

The help-file format is described in the help_fmt help file. C-PLOT formats help
files on the fly to fit whatever terminal screens and workstation windows may be
in use. The help files can be printed using the troff, ditroff, or gtroff UNIX text
formatters and the head.man and Makefile files in the $CPLOTHOME/help_tools
directory. See the README file in that directory for specific information on run-
ning off printed copies of the help files.

Additional help files can be added by each site. The site can create a file named
$CPLOTHOME/motd that C-PLOT will display when it starts.

cd change director y
changes the current working directory of the program, letting you move about
the directory tree into the directories that contain the files you want to access.

cd
or
cd directory

Entered without arguments, cd changes the working directory to your home
directory and prints its name as confirmation. Otherwise, C-PLOT changes the
working directory to the name given as the argument and only prints a message
if it cannot do that.

All subsequent subshells and subprocesses of C-PLOT will have the new directory
as their initial working directory. Changing directory won’t change the working
directory of any subprocesses (user functions and filters) that are already run-
ning, nor will it change the directory of C-PLOT’s parent process. All file names
that you use in any of the commands are taken with respect to the current work-
ing directory. However, you can use the se command to set directories that will
be searched for command files used with the do command and for data files used
with the gd command if such files aren’t in the current directory.

Changing the directory of a subshell created with the u command (described
next) doesn’t change C-PLOT’s current directory. However, entering upwd will
print the name of the current working directory.

8 Chapter 2

u crea te a UNIX subshell
lets you temporarily leave C-PLOT to perform other tasks. When you exit the
subshell, you will be returned to C-PLOT.

u
or
u command

With no arguments, a subshell is created. If the environment variable SHELL is
set to, for instance, /bin/sh or /bin/csh, that shell will be used. If the environ-
ment variable isn’t set, the default /bin/sh will be used.

If a command string is entered after the u , /bin/sh is run to execute that single
line, and the return to the plot program is immediate.

Don’t try to change directory using u cd direc . This command will only
change the directory of the subshell. The subshell disappears as soon as it has
changed its directory and has no effect on the plot program. Use the cd com-
mand described above to change the current directory of the plot program.

To return to C-PLOT, exit the subshell; don’t re-execute C-PLOT. When a subshell
is executed, C-PLOT adds the variable CPLOTLOCK to the subshell environment. If
C-PLOT is invoked again with CPLOTLOCK set in the environment, a message will
appear warning of the nested invocation of C-PLOT.

Utility commands 9

10 Chapter 2

Cha pter 3 Getting and saving data

This chapter gives basic instructions:

for entering data points from the keyboard, from files or with a digitizer
for saving data to files
for modifying data using the interactive editor
for entering and using error-bar information

(Note that data also can be obtained from user functions. See Chapters 11 and
12.)

Commands covered

gd get data
sa save data points
eb select error-bar mode

gd get data
gd
gd mode [filename] [+skip] [=total] [&] [@]
or
gd . [+skip] [=total] [&] [@]

Using get data and its various modes, you can enter data points from the key-
board, read data points from ASCII files, modify points in memory using the
interactive editor, digitize points from the pen plotter or perform one of several
other data manipulations. Up to 65,536 points can be obtained, although mode
7 will only manipulate the points resident in memory. The number of in-mem-
ory points is user configurable in the site-initialization file (see Appendix A).
Also, modes 11, 12 and 14 allow an unlimited number of points to be plotted.

If no arguments are entered with the command, you will be prompted with a list
of the 15 modes for generating or altering data. When appropriate, you also will
be prompted for a file name.

If a file name is specified and it is not in the current directory, C-PLOT will look
for the file in the directory specified by the environment variable, CPLOT_GD_DIR
That directory can also be set with set gd_dir (see Chapter 6). CPLOT_GD_DIR
may contain a colon-separated list of directories, in which case C-PLOT will look
for the file in each directory in turn.

Getting and saving data 11

Get-da ta options

Mode What it does

1 Enter data from the terminal keyboard
2 Take data from ASCII file
3 Same as 2, but with columns specified
4 Break current data around points in the file
5 Same as 4, but with columns specified
6 Reuse current data points
7 Modify current data points
8 Same as 1, but with columns specified
9 Digitize data from the pen plotter
10 Switch x and y
11 Take data from file with no limit on number of points
12 Same as 11, but with columns specified
13 Take data from a binary file
14 Same as 13, with no limit on number of points
15 Erase current data

File for mat; specifying columns

Get data modes 2, 3, 4, 5, 11 and 12 take data from ASCII files. Modes 1 and 8,
which read from the keyboard, obey similar rules.

C-PLOT interprets columns as sequences of characters (not necessarily numbers)
separated by any number of space or tab characters. For get-data modes 1, 2, 4
and 11, the default column ordering puts x and y values in the first two columns.
For 2D plotting the next columns are assigned to x error bars (represented as r),
y error bars (represented as s) and pen control (represented by p), but these
columns will be scanned for values only if the respective features have been
turned on using the error-bar or line-control commands. (See eb below and lc in
Chapter 5.) In 3D mode, the first three columns are for x, y and z data.
Optional columns for z error bars (also represented as s) and pen-control infor-
mation follow.

Under get-data modes 3, 5, 8 and 12, you specify the columns from which C-PLOT
will take data values. If you enter a value of 0 for the x, y or z column, the cur-
rent value for each point will be retained. If you enter a negative value for the
columns for x, y, z or all three, the index number of the point (starting at 0) will
be assigned rather than a number from the file. There may be up to 2,048 char-
acters on an input line; any additional characters are discarded. There is no
limit on the number of columns as long as the data is within the first 2,048 char-
acters of the input line.

12 Chapter 3

Comments in data files

Rows in data files beginning with a # are considered comments and are not
scanned for data. If a row begins with #% , the text that follows will be printed
on the screen as the file is scanned. This lets you include explanatory notes that
will be displayed each time the file is used with C-PLOT. Comment lines are
included in the line count used for the skip option described below.

Modes 1 & 8: Entering data from keyboard

Under get-data mode 1, you will be prompted to type in values for x and y and,
optionally, r, s and p in 2D mode and x, y and z and, optionally, s and p in 3D
mode. Error bars may be entered but will be read only if the error-bar mode has
been turned on using the eb command or, if in mode 8, a positive number is
entered for the error-bar column. You can enter line-control information only if
you have turned the mode on with the lc command.

It is unlikely you would need to choose columns when you are typing in data at
the keyboard, but mode 8 may be useful when constructing command files or if
you want the x, y or z value to be simply the index number of the point (by enter-
ing a negative column number).

Modes 2 & 3: Reading data

Under mode 2, data will be read into the program from ASCII files — created
independently or using the sa command described below — containing columns
of x and y (in 2D mode) and z (in 3D mode), plus, optionally, r (in 2D mode), s
and p. Error bars will be read under mode 2 only if the error-bar mode has been
turned on using the eb command. Line-control information will be read only if
line-control mode has been turned on using lc .

Under mode 3, you instruct C-PLOT which columns in the file to use to obtain
values for x, y, z, r, s and p. If the columns for the error bars are set equal to 0,
no values will be read in for r or s. If a nonzero value is entered for an error-bar
column, values will be read in but error-bar mode will not be turned on. To
enter a column for line-control values, you must first have turned on line-control
mode with the lc command.

Typing a ˆC while reading from a file will abort the read, and the number of
points that were read will be reported.

Modes 4 & 5: Break lines around points

This mode is useful if the current data is a dense set of points to be drawn as a
line and you wish to break the line around a sparser set of points drawn as dis-
crete symbols. This may be the case, for instance, when you draw a fitted or the-
oretical curve through data.

Getting and saving data 13

Assume, for example, that you have drawn the axes and data points from
datafile, and the current data is to be the smooth curve, perhaps generated from
a user function (see Chapter 11). If you type

gd 4 datafile

points “near” the sparse data points of datafile won’t be drawn when a point-
drawing command such as pp is executed with a line symbol, as in the following
example.

The actual distance used to define a nearby point is proportional to the charac-
ter size of the symbol (see cs , Chapter 6). To increase the gap around the sym-
bols, increase the size of the symbol width before entering gd 4 . If the error-bar
mode is on when the points are read, the line also will be broken about the error
bars.

This mode does not interpolate between points. You must have a large number
of points for the breaks in the line to be symmetric.

Mode 5 is the same as 4, except that you specify columns for x, y and, optionally,
r and s.

These modes work by assigning line-control information to each point. However,
the user-toggled line-control mode is turned off. Although the data will be
drawn using the line-control information, that information will not be used by
other commands such as sa or gd 7 If you do turn line-control mode on (or back
on) with the lc command, the line-control information obtained from modes 4 or
5 will be available for other commands.

14 Chapter 3

Note that the symbol filling available on many filters can be used to produce a
similar effect by drawing open symbols over solid lines.

Mode 6: Reuse current data points

Mode 6 is useful after reading in data with modes 11 or 12. It keeps the current
data in memory, but prevents the program from reading more points from the
open-ended file when you draw the plot.

Mode 7: Modify points

Under mode 7, the values for each data point in memory will be listed in turn,
and you may alter, insert or delete points. Error-bar and line-control values will
be displayed for editing only if the corresponding mode is on. Only the in-mem-
ory points may be modified, and if modified, the total number of points will be
truncated to the number of allowed in-memory points as set in the initialization
file (see Appendix A).

The commands for modifying points are shown in the following table. The nota-
tion [v] means that entering a numerical value is optional for that command.

Point editing commands

Command What it does

num g or <backspace> Go to point number num
[v] <return> Change data to v, go to next value
[v] f Change data to v, go to next point
[v] b or \ Change data to v, go to prior point
[v] c or <linefeed> Change data to v, update display
G Go to last point
a Append a point after current point
i Insert a point before current point
d Delete current point
ˆD Exit
ˆC or <break> Exit without using changes

When you enter <return> to go to the next value, you will move from x to y to z
(in 3D mode) and, if error-bar and/or line-control modes are on, to r, s, z and/or
p, then to the next point. All the other commands move you directly to another
point.

If there is no data present, the number of points is set to one. If you delete the
last point with d , you are returned to the PLOT-> prompt. The values of points
inserted with i or a are initialized to zero.

Getting and saving data 15

PseudoGra phics interactive point editing

You can use mode 7 to interactively modify 2D data points that are displayed in
PseudoGraphics, using the commands described in the table above. The data is
displayed on the video terminal with the current point highlighted.

The following chart shows the commands for interactive editing with Pseudo-
Graphics.

Key Arrow key Action

A Up Turn on interactive mode.
B Down Turn off interactive mode.
C Right Scan forward through points.

Press any key to stop. (Un-
available on some systems.)

D Left Scan backward through points.

You can edit at one time only as many points as are held in memory, a value set
in the initialization file (see Appendix A).

Mode 9: Digitize from pen plotter

Mode 9, available only in 2D mode, lets you use the pen plotter as a digitizer. If
possible, the digitizing site (available from Hewlett-Packard, part number
09872-60066) should be installed in the plotter to make it easy to align the pen
carriage over the desired points. To digitize, position the site over the appropri-
ate points using the plotter’s front-panel controls. Press the enter control on the
plotter to send a point to the computer.

The computer will first ask you to set three scaling points that will be used to
translate the plotter’s native coordinates to the coordinates of the plot you are
digitizing. Since there are three scaling points, it is not necessary for the axes of
the points being digitized to be perfectly aligned with the plotter motions.
Choosing three points that are widely separated gives the least error when
C-PLOT calculates the transformation factors. When setting the scaling points,
move to each one using the plotter control panel and press the enter control.
The computer prints out the plotter coordinates and asks you for the equivalent
coordinates on your plot.

After setting the three scaling points, site each point to be digitized in turn and
press the enter control on the plotter. As each point is digitized, your coordi-
nates appear on the terminal. You don’t have to type anything else at the key-
board until you are done. To finish, type ˆC .

16 Chapter 3

If line-control mode is on while digitizing, the pen up or down status at the time
you press the enter control is stored with each point.

Mode 10: Switch x and y

In 2D mode, values for x and y and for x- and y-error bars are switched. In 3D
mode, only x and y values are switched.

Modes 11 & 12: Read unlimited data from files

These modes let you plot an unlimited of number of data points with only one
call to gd . When you enter gd 11 , a first set of points is read into memory. The
number of points read is the number of in-memory points as set in the site-ini-
tialization file (see Appendix A). These points will be drawn when you plot the
points or the error bars using the p , pz , z , zz , pp , zp , pb or zb commands. The
next set of points will then automatically be read from the file and plotted, and
so on, until the file is exhausted or the limit set with the =total option
(described below) is reached. At the conclusion of the point plotting, the points
in memory will be the last points read. However, if you plot the points again,
the first points in the file will be read and all the points will be plotted.

All other commands that use data points will only use those currently in mem-
ory after reading in data with these modes.

If you enter gd 6 , the current points in memory will continue to be available,
and only those points will be drawn when you enter the commands to draw
points.

Typing a ˆC while reading from the file, either during the gd command or while
drawing the points, will abort the read, and the number of points successfully
read will be reported. A subsequent command to plot the data points will still
read the entire data set from the file and plot all the points.

Modes 13 & 14: Read data from binary files

These modes allow points to be plotted from binary files, the fastest way to read
data into C-PLOT. The format of the file is given by the struct pt given in the
include file p_plot.h That structure is:

struct pt {
int p_flags; /* flags for this point */
float p_d[4]; /* data */

};

Presently, p_flags contains line-control status in the low-order two bits. The
elements in p_d[4] hold x, y, x error bars and y error bars in 2D mode. In 3D
mode they hold x, y, z and z error bars.

Getting and saving data 17

The general gd command options, described below, can be used with these
modes.

Mode 14 reads from an indefinitely long file, like modes 11 and 12.

Mode 15: Erase current data

You may wish to erase the current data before calling user functions that will
ignore the current data. Erasing the current data does not change the current
ranges.

Options +skip, =total, &, . and @

The +skip and =total options let you select particular windows of data from
your file. They also can be used to read in sections of a file for editing under
mode 7. Skip is an integer telling the program how many lines in a file to skip
before starting to read in data points. When skipping lines, each line in the file
is counted, whether it contains valid data or not. Total specifies the maximum
number of points to be read from the file.

The & argument causes the data points being obtained to be appended to the
current data points.

The @ argument specifies real-time plotting. When you plot the points, C-PLOT
will first draw any data already in a file. It will then continue to check the file
to see if more points have been added, plotting them as they appear. If the end-
of-file character (ASCII 04) or a ˆD are read from the file after a newline, the
program stops reading the file and proceeds to the next command (if running
from a command file) or to the PLOT-> prompt (if running interactively.) You
also can use a ˆC to interrupt the reading. In the present implementation, the
program sleeps for one second between checks for new data.

The optional arguments & and @ are typed after the file name and separated

from the file name by space.

Entering gd . tells C-PLOT to get data using the same mode and file name as
before. For the modes with specified columns (3, 5, 8 and 12), you will still be
prompted for column numbers. You can use . to keep the same file name when
switching to a different mode. After entering gd 2 filename , for example, you
can enter gd 3 . to indicate you want to use the same file, but this time you
want to specify the columns.

You can use the & and @ options with the . option. For instance, gd .

+1024 will begin reading at the 1025th line in the current data file. If

you followed that with just gd ., the first points in the file will be

read.

18 Chapter 3

The . option does not repeat modes 6, 7, 10 or 15.

sa save current data
lists the current data points on the screen or, if specified, to a file or device.

sa
or
sa [-b] filename [a or w]

You may, for example, wish to save data to a file if you have entered data using
the digitizer or the keyboard, if you have created or modified data with a user
function (see fn , Chapter 11), if you have modified data using the data editor, gd
7 , or if you wish to save data in binary format.

If no parameters are given with the command, save data lists the values of the
current data on the screen. If 3D, error-bar and/or line-control modes are on, r,
s, z and/or p values are listed, as appropriate, in addition to x and y.

Filename is the path name of a file or device to which to write the data points.
If the file already exists, you will be asked whether you want to write over the
current contents of the file or add the data to the end of the file. Type <return>
if you don’t want to do either. You also can choose on the command line to write
over or append the file by putting an a , for append, or a w , for write over, after
the file name.

A −b before the file name will cause the data to be written to the file in a binary
format suitable for reading back with gd modes 13 or 14. Binary data files can
be read in and written out faster than ASCII files and are generally smaller.

Save data will abort if there is a write error to the file or device.

eb select error-bar mode
turns error-bar mode on and off.

eb [x|y|z] [0|1]

Entered without parameters, eb toggles error-bar mode on or off. In 2D mode it
toggles y-axis error bars and in 3D mode z-axis error bars. In 2D mode, x or y
can be given as arguments to toggle the respective error bars off or on. An argu-
ment of 0 or 1 will turn error bars off or on, respectively.

When a ? is entered with eb , C-PLOT will indicate which error-bar modes are on
and which are off.

When switching between 2D and 3D plotting, the y and z error-bar modes will
reflect each other’s states. For example, if y error bars are on in 2D mode, z
error bars will be on in 3D mode, and vice versa.

Getting and saving data 19

Although a file may include columns for error bars, C-PLOT will not read them
unless the error-bar mode has been turned on or a nonzero column for the error
bars has been specified under gd modes 3, 5, 8 or 12.

When the error-bar mode is on, error bars are scanned in gd modes 1, 2 and 11;
error-bar values are displayed in gd mode 7; error-bar values are included in the
save data command, sa ; and error bars are drawn when you enter the draw plot
commands, p , pz , z or zz .

When the error-bar mode is on, the automatic data-ranging will include the
error bars in the range settings when the first data set is read or when the new
points command (np , see Chapter 5) is used. Data masking with gd modes 4 and
5 will take error-bar lengths into account when doing the masking.

20 Chapter 3

Cha pter 4 Using PseudoGraphics

In this chapter you will find instructions for using PseudoGraphics — fast, low-
resolution displays that work on most video terminals. Note that the Pseudo-
Graphics feature is available only for 2D plotting.

Commands covered

v draw PseudoGraphics plot
va draw PseudoGraphics axes
vp draw PseudoGraphics points
vb select inclusion of PseudoGraphics axes
vt select automatic drawing of PseudoGraphics
er erase the video screen
gr select PseudoGraphics terminal type

v draw PseudoGraphics plot
uses the alternate characters available on many terminals (or else standard
ASCII characters) to quickly draw a low-resolution version of the plot, with axes,
range settings and points.

v

The v command erases the video screen and draws a bare-bones display of your
plot. The values of the tick numbers and the positions of the major tick marks
are shown as they will appear on the plot. However, symbol, text and most
other formatting features described in Chapters 5 and 6 are not available with
PseudoGraphics.

va draw PseudoGraphics axes
draws the plot axes without displaying points.

va

The plot axes will be drawn with ranges set according to the ra , ro or np com-
mands. The screen is not erased before the axes are drawn, and the cursor is
put in the upper-left corner of the screen after the axes are drawn. This com-
mand is the quickest way to see how the axes will appear on the final plot.

Using PseudoGraphics 21

vp draw PseudoGraphics points
overlays the screen with the current data points.

vp

Just the points will be drawn on the screen. The screen is not erased before the
points are drawn, and the cursor is put in the upper-left corner of the screen
after they are drawn.

vb select inclusion of PseudoGraphics axes
lets you instruct C-PLOT to draw only the points and not the box formed by the
axes when the v command is entered.

vb
or
vb state

With no parameters, the inclusion option is toggled. If state is a 0 , only the
points are drawn with v . If state is a 1 , both the points and axes are drawn.

vt select automatic drawing of PseudoGraphics
causes a plot to be drawn automatically after certain commands are executed.

vt
or
vt state

With no parameters, the automatic drawing option is toggled. If state is 0 ,
automatic drawing is turned off. If state is 1 , automatic drawing is turned on.
When the option is enabled, the PseudoGraphics plot will be drawn whenever
the np , gd , fn , f1 , f2 or f3 commands return without an error.

er erase the video screen
clears the video screen.

er

The er command will work only if the terminal variable exported by the shell (or
set in the site-initialization file) or the terminal type set with the gr command
(described next) and the corresponding entry in the terminal-capabilities data
base correctly describe your terminal (see Appendix A).

22 Chapter 4

gr select PseudoGraphics terminal type
lets you identify the terminal in use so that C-PLOT can send the proper control
codes to erase the screen and draw PseudoGraphics. You also can select the
proper alternate character set for PseudoGraphics.

gr
gr terminal_name
or
gr terminal_name character_set

C-PLOT normally obtains the terminal name from the environment exported by
the shell, and you won’t need to use this command. However, if the name from
the environment is wrong or absent, you can use this command to set the termi-
nal type from within C-PLOT. You also can use the gr command to select a Pseu-
doGraphics character set independently of the terminal type.

The terminal_name option determines which control codes are sent to the termi-
nal to erase the screen and position the cursor for drawing PseudoGraphics.
The character_set option determines which characters are used to draw the
PseudoGraphics axes and points. For some of the more common terminal types,
the terminal name and character set name are the same.

Without an argument, gr lists the names associated with each of the built-in
PseudoGraphics character sets, prints the current terminal name and character-
set name and prompts you for new names. Entering <return> retains the cur-
rent names. Entering one name (or one argument after gr) selects a new termi-
nal type. If the name matches one of the character sets, that set is selected also.
If you enter a second name (or argument) and it is a valid character-set name,
that set is selected. An invalid name selects the dumb set.

Refer to Appendix A for details on PseudoGraphics implementation, including a
list of valid character-set names. Valid terminal names are system dependent.
On BSD UNIX systems, they are in the file /etc/termcap. On System V installa-
tions, look in the subdirectories of /usr/lib/terminfo.

Using PseudoGraphics 23

24 Chapter 4

Cha pter 5 Designing the Plot

In this chapter you will find instructions for:

changing the format of the plot, including selecting the plotting symbol and
plot window
selecting the axis type
choosing between linear and logarithmic axes
3D plotting

Commands covered

2d select 2D mode
3d select 3D mode
lc select line-control mode
ra, ro select axis range/range options
np reset axes for new points
re reset program for new plot
tu turn plot
ty select type of plot
st select plot style
sw swivel plot
wi select size and location of plot window
lo locate plot
bo set 3D box ratios
vi set 3D view point
tw tweak plot orientation

2d select 2D mode
changes plotting to 2D mode.

2d

The 2d command switches C-PLOT to 2D mode, which is the startup condition.
In 2D mode, the axes are drawn and the data is plotted in a 2D window.

Also in 2D mode, error bars are available for both the x and y data.

Designing the Plot 25

3d select 3D mode
changes plotting to 3D mode.

3d

The 3d command switches C-PLOT to 3D mode. In 3D mode, the axes are drawn
and the data is plotted using a 3D perspective box.

The commands vi , to set the view point of the 3D box, and bo , to set the relative
lengths of the 3D box, are available in 3D mode. Both are described below.

The absolute size of the 3D box is the largest that just fits in the 2D window set
by the window command, wi , without distorting the aspect ratio of the box.

Three arguments are required when position arguments are used with the com-
mands to draw annotation or a key, pn , zn , pk or zk . The units of the position
arguments are data units, as in 2D mode, or box units, as used with the bo com-
mand.

In 3D mode, the gd 9 command (digitize) and the gd 4 and gd 5 commands
(break data) are not available. The other gd modes and the sa command work
with three columns of data, plus optional error-bar and pen-control values.
Note, however, that only z error bars are available in 3D mode.

In 3D mode, the commands ra , ro , np , ty and tx take extra arguments and/or
prompt for extra values associated with the z axis.

In its current state, 3D functionality has some limitations. Circle symbols are
drawn as flat 2D circles in 3D mode. Axis numbering and annotation are in
fixed planes and orientation.

lc line-control mode
allows multiply segmented lines to be drawn from a data set and/or the filling of
shapes formed by consecutive data points.

lc
or
lc state

Line-control mode lets you draw multiply segmented lines from a single data
set, or draw filled shapes. Line-control information instructs the program
whether to move to a point with the pen up or down while drawing with one of
the line symbols. (With graphics filters, line-control information instructs the
filter whether to draw continuously or not.)

Line-control information is associated with each point. A 0 (or blank) in the
line-control column of a file provides continuous drawing. A 1 instructs the pro-
gram to move to that point with the pen up. (The first point is always reached

26 Chapter 5

with pen up.) A 2 in the line-control column also means to move to the point
with pen up, but the figure formed by subsequent points with 0 line control will
be filled with the current “white” fill color.

Entered without parameters, lc toggles line-control mode on and off. If the com-
mand is entered with a 0 as an argument, line-control mode is turned off.
Entered with a 1 , it is turned on.

For example, with line-control mode on, the following 24 data points produce the
displayed shapes:

Line control

0 0 1 4 0 1
2 0 6 0
2 2 6 2
0 2 4 2
0 0 4 0
0 2 1 4 2 1
1 3 5 3
3 3 7 3
3 1 7 1
2 0 6 0
2 2 1 6 2 1
3 3 7 3

Line-control information can be read using the get data command and is saved
with the save data command. Although a file may include a column for line con-
trol, it will not be read in unless the line-control mode has been turned on.

ra, ro select axis range, select range options
C-PLOT sets the axis ranges and the positioning and style of the tick marks
when the first set of data is read. It will maintain these parameters until np is
executed, the ranges are changed using ra or ro , or the reset command, re ,
clears the current data.

Select axis range lets you set minimum and maximum ranges for each axis.
Select range options lets you choose the style of the axis tick marks in addition
to setting the range.

ra
ra x|y|z
ra xmin [xmax [ymin [ymax [zmin [zmax]]]]]
ra y ymin [ymax]
ra z zmin [zmax]
ro
or
ro x|y|z

When ra is entered, C-PLOT prompts for minimum and maximum values for

Designing the Plot 27

each axis. The current minimum and maximum are shown in parentheses.
Enter <return> to maintain the current values. If you specify a single axis by
entering x , y or z as an argument, you will only be asked to range that axis.

If you only range one axis and there is data present, you will be asked if you
want C-PLOT to reset the ranges on the other axes. If so, the program will reset
the other axes so they include only the range of points corresponding to the plot
section you chose for the first axis range.

If you specify one to six numerical arguments, they will be taken as, in order,
the minimum and maximum values for the x-axis, then the y-axis, then the z-
axis. You also can give the argument y and specify one or two values for the y-
axis range or the argument z and specify one or two values for the z-axis range.
You won’t be prompted for other information when you give numerical argu-
ments.

C-PLOT ordinarily automatically determines the positioning and spacing of the
tick marks and the numbering of each axis. You can control these parameters,
however, either by using the ty command (see below) or by setting them with
the ro command.

Entered without an argument, ro will prompt for the range minimums and max-
imums for all axes. If you specify x , y or z , you will be prompted only for that
axis. In addition, ro will prompt you to choose among three other options:

Exact Ranges. The axis will begin and end at the specified minimum and
maximum. The tick spacing and numbering will be decided according to
C-PLOT’s standard algorithm. The default is off.

Axis Padding. The first and last tick marks will be moved in slightly from
the end of the axis if the minimum or maximum range value is too near to
or coincides with the first and last tick positions. Axis padding cannot be
used with the exact-ranges option. The default is on.

User-Defined Tick Spacing. The first and last tick marks and the corre-
sponding axis numbers will coincide with the minimum and maximum
range values. With linear axes, you specify how many intervals are to be
used and how many intermediate tick marks are to be placed in each inter-
val. With logarithmic axes, you specify how many major intervals between
numbers and the number of intermediate tick marks. The latter is rounded
down to eight, two or zero. The default is off.

28 Chapter 5

The next example shows the effect of axis padding and exact ranges:

Range options

The next example illustrates user-defined tick spacing:

Tick spacing

np reset axes for new points
sets new axis ranges based on the current set of data.

np
or
np x|y|z

Once the data ranges are set, automatically with the first data, explicitly using
the ra or ro commands, or as part of a reset with the re command, those ranges
remain in effect when new data is entered. The np command will reset the axis
ranges to encompass the maximum and minimum values of the current data. If
error-bar mode is on, the ranges are set to include the error bars.

With an argument of x , y or z , np will reset the range only of the axis specified.

If the plot type is set for a logarithmic axis, C-PLOT ignores points less than or
equal to zero when doing the automatic ranging.

The new points command will clear any range specifications set with the ra or
ro command. If there is no data present or if all the x, y or z values are the
same, an error message is printed.

Designing the Plot 29

re reset program for new plot
automatically restores several program parameters to their start-up condition.

re

Reset will restore the parameters listed below to their original condition.

Command Description State

cs Character size Set to defaults
gd Points Number of points set to 0
gk Key Clear key
ra Range Clear axis ranges
ro User ticks Clear user settings
sy Symbol Set symbol to a dot
tu Plot orientation Landscape
tx Text Clear label and title
ty (and ro) Plot types Set all type flags to 0
wi Window Set to selection code 0
vi 3D view point Set to 1.3 −2.4 2
bo 3D box Set to 1 1 1
st Plot style Set to 0
lo Location Set to 0 0 1 1
se Set options Dash length 1mm

Line spacing 1.5 × text height
Tick length 1.5%

It is possible to retain axis-range settings following a reset. The axes-range val-
ues last used are actually remembered after a reset. If you enter the ra com-
mand before reading in new data, those values become the default values and
can be selected by simply entering <return> . If you don’t enter the ra com-
mand, the program behaves as if the ranges haven’t been set.

The current font, filters, active user functions, command-file directory, get-data
directory and user-function directory are not changed by the re command.

30 Chapter 5

tu tur n plot
determines whether the plot is drawn in landscape or portrait mode. (Land-
scape is the default.)

tu
or
tu state

If no parameter is used, the plot orientation is toggled. An argument of 0 puts
the plot in landscape mode. If 1 is given as the argument, the plot is drawn in
portrait orientation.

C-PLOT will try to maintain the window dimensions chosen with wi . If a win-
dow won’t fit when the plot is turned, the default window dimensions are used
and an error message is printed.

Plots displayed using PseudoGraphics are not affected.

ty select type of plot
lets you control many details of how the plot looks, such as whether to use linear
or logarithmic axes and how to number and put tick marks on the axes.

ty
ty x_type y_type overall_type
or
ty x_type y_type z_type overall_type

The ty command allows you to format plots interactively or by entering a simple
set of codes. C-PLOT encodes the format for a plot in three or four numerical
flags. The first flag describes the x axis. The second controls the y axis. The
third, in 3D mode, controls the z axis. The last selects overall plot features.
There are three ways to select values for the flags: If you know these numbers
you can enter them as arguments to the ty command. If you know the numbers
but don’t remember the order in which to enter them, ty will prompt for them
one at a time. Finally, if you don’t know the appropriate numbers, you can select
one feature at a time as prompted. C-PLOT will display the encoded numbers
after you have made your format choices so you can select the same features
more quickly next time. (Instructions for working with the coding scheme are
given below.)

The two tables that follow list features controlled by ty . The value column gives
the numerical code for the alternate mode shown for each feature. (The default
mode in each case has a value of zero.) The octal column is an alternative nota-
tion for each value. Hexadecimal notation also is recognized (see below). The
first table presents the options you can select that control the overall plot type.

Designing the Plot 31

Axis type

Usual mode Alter nate mode Value Octal

Automatic tick spacing User tick spacing 1 01
Use normal auto-ranging Entered ranges exact 2 02
Can move in end ticks Don’t move ticks 4 04
Use linear axis Use logarithmic axis 8 010
Number axis Don’t number axis 16 020
Scientific notation Engineering notation 32 040
Log axis decimal optional Power-of-ten notation 32 040
Use trailing zeros No trailing zeros 64 0100
Use leading zeros No leading zeros 128 0200
Print all axis numbers Don’t print first number 256 0400
Draw tick marks Don’t draw tick marks 512 01000
Ticks inside axis No ticks inside axis 1024 02000
No ticks outside axis Ticks extend past axis 2048 04000
Dual-height ticks Uniform ticks 4096 010000
Normal tick marks Tick marks form a grid 8192 020000
Draw axis and numbers Don’t draw them 16384 040000

Note that the first three axis modes above — user-defined tick spacing:exact
ranges and axis padding — also can be selected using the ro command. Param-
eters for user-defined tick spacing normally are entered using the ro command.
If selecting plot features interactively, you will be prompted for user-defined
tick-space settings.

Overall plot type

Usual mode Alter nate mode Value Octal

Draw a complete box Just draw x and y axes 2 02
Put ticks all around No ticks left and right 4 04
Cut off plot symbols Let symbols overlap axes 8 010
Drop out-of-range points Draw them on axes 16 020
Don’t draw border Draw border around edge 32 040
[] enclose units () enclose units 64 0100
Y-axis label ticks on left Draw them on right side 128 0200
Draw left and right y-axis No right-side y-axis 256 0400
Draw left and right y-axis Draw just right-side y-axis 512 01000
Traditional axis labels APS-style labels 1024 02000

Plot type 256 is allowed only when type 128 is not selected. Plot type 512 is
allowed only when type 128 is selected.

32 Chapter 5

Selecting overall plot type 128 places the y-axis label and tick numbers on the
right side of the plot. By itself, this plot type is useful if the plot only has one
type of y-axis numbering.

To have different numbering and labels on each side of the plot, first enter labels
and ranges for the left side, select overall plot type 256 and draw the plot. Plot
type 256 prevents the right side axis from being drawn. Next select overall plot
type 640 (128+512), enter the ranges (ra) and labels (tx) for the right-side axis,
and draw the axis and labels. Plot type 128 places the label and numbers to the
right, and plot type 512 draws only the right-side axis.

APS-style labels (1024) have parentheses around the units and no multiplication
sign in front of the scale factor. For dimensionless quantities, the inverse of the
scale factor is placed in front of the label with no parentheses.

Setting values

The values in the tables above select the respective alternate modes for each
plot feature via the three (or, in 3D mode, four) plot-type codings, which are nor-
mally entered as arguments on the command line. Each of the codings — one
for the overall plot and one for each axis — is the sum of the values associated
with the alternate modes in the tables. A zero for any feature chooses the
default mode, so you only include values for those alternate modes you want to
select.

Entering 1040 for an axis, for instance, selects no numbering (16) and no tick
marks inside the axis (1024). Other features are set to the usual mode. Enter-
ing a zero means all the usual modes are used. If you enter . for a plot-type
number, C-PLOT will use the previous value for that plot type and not prompt for
additional information.

You can turn off a feature by entering its value preceded by + or − . A + turns on
the alternate mode. A − restores the usual mode. For instance, entering ty .
+8 . turns on logarithmic axis mode for the y-axis without affecting any previ-
ously selected alternate mode.

You can code values for the three plot-type numbers in decimal, octal or hex-
adecimal. For octal, precede the number by 0 . For hexadecimal, precede the
number by 0x . C-PLOT will show the coding for each set of features using the
most recent coding type.

Designing the Plot 33

st select plot style
selects plot style.

st [code]

The st command selects from several defined plot styles. The default style in
both 2D and 3D mode is style 0.

In 2D mode the following styles are available:

Code What is drawn

0 All four sides
1 Only center lines through zero

In 3D mode the following styles are available:

Code What is drawn

0 All six sides of the cube
1 Only center lines through zero
2 Only bottom and two back sides of the cube
3 Only the bottom of the cube
4 Only the three numbered edges

Here are examples of the selected styles:

34 Chapter 5

sw swivel plot
sets the plot swivel in the plane of the page.

sw [angle]

The sw command rotates the 2D or 3D plot in the plane of the page. The units of
angle are degrees. The 2D plots are distorted as they are rotated; 3D plots are
not.

wi select plot window
lets you place plots anywhere on the page and lets you draw them in any size
rectangle that will fit on the page. You can put multiple plots on a single page
by choosing suitable windows for each.

wi
wi #
wi width height
wi vert_offset width height
or
wi horz_offset vert_offset width height

With no arguments and with no pen plotter initialized, wi will display the cur-
rent window size and position. A single argument will set the plot size accord-
ing to the following coding:

Selection code Window size

0 20cm x 15cm (the default)
1 15cm x 15cm
2 15cm x 12.5cm
3 12.5cm x 12.5cm
9 The entire available area

Two arguments will specify the width and height of the plot. The first argument
is the width, the second the height.

If there are three arguments, the first value represents the distance from the
bottom of the drawing area to the bottom of the plot window. The second and
third arguments are the width and height. The plots are drawn centered hori-
zontally on the page.

If there are four arguments, the first value is the distance from the left edge of
the drawing area to the left edge of the plot window. The second value is the
distance from the bottom of the drawing area to the bottom of the plot. The
third argument is the width of the plot and the fourth argument is its height.

Designing the Plot 35

If vert_offset or horz_offset are negative, they represent offsets from the top
or right side of the plot window to the top or right side of the drawing area. The
offset argument −0 places the plot window adjacent to the corresponding edge of
the drawing area.

Select plot window, like annotate and draw key (see pn and zn , pk and zk , Chap-
ter 6), uses pen-plotter centimeter units. The units correspond to actual cen-
timeters on the pen plotter. Centimeter units on the graphics filter device will
only be exact if you have selected the appropriate scaling factors using the sc
command (see Chapter 9).

Using four arguments to wi , you have complete control over the position and
size of the plot and can easily place multiple plots on a page, as shown in the fol-
lowing example:

Window sizing

In 3D mode, the 3D plot is scaled to fit the 2D window. The aspect ratio of the
3D plot is not changed, however. Generally, two points on the 3D axis will touch
the 2D window in one direction while the 3D plot is centered in the 2D window
in the other direction.

Using a pen plotter

You can set the plot window with the pen plotter’s controls. With no arguments
to wi , and if the pen plotter is initialized, you are asked to set the size of the
window using the plotter controls. Enter <return> to use the current window.

36 Chapter 5

Otherwise, set the plotter’s scaling points (P1 and P2) to two corners of the
desired plot window according to the pen plotter manual, then enter <return> .
The current window size will be displayed.

Different models of pen plotters have different sizes for their available plotting
areas. Before the plotter is initialized, the size that C-PLOT assumes for a plot-
ting area is set to match that of the HP7440A plotter with A-size paper,
19.125×25.75 centimeters (10.14×7.53 inches). The position of the window on
the page is set with respect to this page size. If a pen plotter with a different
plotting area is initialized, C-PLOT will use that area. The relative position of
plots drawn using different plotter areas but the same arguments to wi will
vary. Since the window sizes and position (along with character sizes) are speci-
fied in pen-plotter centimeter units, the actual size of plots will not vary.

Unless the sc command has been used to select filter scaling factors, the current
plotting area will be mapped to the entire graphics-filter plotting area, and the
aspect ratio between the axes will not be maintained.

Once you initialize the plotter, C-PLOT remembers that plotter’s available area,
even after you release it (see rp , Chapter 7). Don’t spend too much time fine-
tuning the look of a plot using a filter device if you plan to plot it on a pen plot-
ter (other than the HP7440A) without first initializing the plotter to read in its
available area.

lo loca te plot
lets you resize the plot and relocate it anywhere on the page.

lo
or
lo llx lly urx ury

The locate plot command rescales the entire plot to fit into the box described by
the coordinates you enter. Consider the lower-left and upper-right corners of the
available plotting area on the landscape page to have coordinates (0,0) and (1,1),
respectively. With the locate plot command, you can enter new values for the
lower-left and upper-right coordinates. All elements of the plot will then be
drawn within the box you have described.

With no arguments, you will be prompted for the coordinate values. You also
can enter the four values directly on the command line.

Designing the Plot 37

bo select 3D box ratios
sets the relative sizes of the 3D axis box edges.

bo
or
bo x|. y|. z|.

The axes of 3D plots can be imagined as drawn in a box, whose relative dimen-
sions are set with the bo command. One corner of the box is at coordinates
(0,0,0) in box units. The opposite corner is at the position specified by x , y and
z .

The numbers you enter will be rescaled so that the longest side of the box has a
length of one box unit. You can use a dot for any of the arguments to indicate
that the current value should be used.

For example, the command bo 10 10 4 will create an axis box that is shorter in
the z direction. The length of the x and y sides of the box will be one box unit.
The length of the z side will be 0.4 box units.

The commands that draw annotation and the key (pn , zn , pk and zk) use box
units to position the text when data units are not chosen using the u suffix.

vi select 3D plot view
sets the 3D view point.

vi
vi x|. y|. z|.
or
vi d

The vi command sets the 3D-mode view point, which determines the perspective
of the 3D plot. The view point is the position in space from which you view the
center of the 3D box. The units of the view point are in the box units used with
the bo command. Those units place one corner of the 3D box at (0, 0, 0) and the
opposite corner at the position set by the bo command. The default view point is
at (1.3, −2.4, 2).

To set the view point, you can enter the coordinates as arguments to the com-
mand, or you can just enter vi and be prompted for values. When entering
arguments on the command line, you can enter a dot to indicate you want to use
the current value for the particular coordinate.

By giving one numerical argument to the vi command you can change the view
distance without changing the view direction.

38 Chapter 5

tw tweak plot orienta tion
interactively rotates the 3D axis orientation

tw

The tweak command is useful for interactively setting the view point of a 3D
plot. The graphics filter should be a display terminal. If the filter is associated
with a printer, you will generate a plot each time you hit <return> .

Although you normally specify the orientation of the 3D axis in C-PLOT using
view-point coordinates, the tw command works in terms of rotation angles.
When you enter tw , the current rotation angles, the view-point radial distance
and the view-point coordinates are printed, along with the four current tweak
deltas. The first three deltas are the increments to the rotation angles that will
be made each time you hit <return> . The last delta is the increment to the
view-point distance.

If you just hit <return> , the current deltas will be added to the angles and
view-point distance, the view point will be recalculated and the 3D plot will be
redrawn. However, you can enter new deltas before you press <return> . Only
the values you enter — up to four — will be used. You can use a dot in any of
the positions to use the current value for that delta. A single minus sign in one
of the positions changes the sign of the corresponding delta. Entering =numb
sets the value of the corresponding delta to numb .

Type ˆD to quit tweak mode and restore text mode on graphics terminals. The
view-point parameters set with the vi command will be updated to reflect the
current orientation.

On video terminals that use a serial line for sending both text and graphics,
such as 4014 emulators, use the zq command to turn off echoing of input and the
sending of output text to the terminal before entering tw . When you exit tweak
mode, echoing of input and sending of output will be restored.

The tw command also functions in 2D mode, although only the first delta, which
corresponds to the swivel parameter (see sw) has an effect.

Designing the Plot 39

40 Chapter 5

Cha pter 6 Adding Text

In this chapter you will find instructions for:

entering and formatting text for axis labels, plot title, key and annotation
customizing the size and shape of the characters and obtaining scientific,
mathematical and foreign characters

Commands covered

cs set character sizes
ft select font
sy select plotting symbol
gk enter symbols and text for plot key
se set parameters
tx enter text for plot labels and title
yg set gap between y-axis and label

cs set character sizes
lets you vary the height, width and slant of text characters and the plotting
symbol. Changing the width of the symbol controls the width of error bars (see
eb , below) and the size of data masking in gd 4 (see Chapter 3).

cs
cs t|l|n|s|d|k height [ratio [slant]]
or
cs t|l|n|s|d|k

Character height is given in millimeters and refers to upper-case letters. The
width is controlled by setting the ratio of height to width. Character slant is
given in degrees. Positive values slant characters to the right, negative values
to the left.

Without arguments, C-PLOT will prompt you separately to set the height, height-
to-width ratio and slant for the title, axis labels, axis numbers, symbol, key,
annotation and date. The current values are given in parentheses. Only the
parameters for which you enter values will be changed. Entering one value
changes only the height. Entering two changes the height and the height-to-
width ratio. Entering three changes the height, height-to-width ratio and slant.

Adding Text 41

You also can apply the command to only one text group using the arguments t ,
l , n , s , k or d to select title, labels, numbers, symbol, key and annotation or
date, respectively.

If you enter the parameter for one type of text on the command line, you will be
prompted to set the height, height-to-width ratio and slant for that text. (Only
one text type at a time can be set using this method.) Alternatively, you can
place the parameters for one or more types of text on the command line along
with values for height, height-to-width ratio and slant. For example, entering
cs s 6 2 sets the symbol height to 6 and its height-to-width ratio to 2.

The absolute character dimensions, given in millimeters, are always accurate on
the pen plotter. The actual dimensions of characters drawn with a graphics fil-
ter vary depending on the mapping of pen-plotter units to the particular graph-
ics device. (Select filter-scaling factors, or sc , lets you control the mapping. See
Chapter 9.)

The example below shows text with various dimension settings:

Character dimensions

At program start-up or after a reset (see re), characters will be drawn with their
height-to-width ratio set to 2 and slant set to 0. The default title height is 5 mil-
limeters. Axis labels and numbers, key and annotation text and the date default
to 4.5 millimeters high. The default symbol height is 4 millimeters.

ft select font
controls the font used to draw text on the plot.

ft
or
ft #

With no parameters, a summary of the available fonts is printed along with the
code for the current font, and you are prompted to enter the code for a new font.
Note that fonts also can be changed within a text string with the \f# special-
character sequence, where # is the font code.

42 Chapter 6

You also can select the font by giving its code as an argument. Code numbers
are shown in the following table. Font 0 is the default font.

Code Resolu- Line Descrip- Propor- Specimen
tion width tion tional

0 Low Single Sans-serif No

1 Medium Double Serif Yes

2 High Single Sans-serif Yes

3 High Double Serif Yes

4 High Triple Serif Yes

5 High Double Block Yes

6 High Triple Gothic Yes

7 High Single Script Yes

8 High Double Script Yes

C-PLOT forms characters by plotting a series of lines. The font resolution refers
to the size of the grid used to design the characters. The low-resolution font,
font 0, uses a grid that is six units wide by eight units high. The medium-reso-
lution font, font 1, uses a 13-by-13 grid. All the other fonts use the finest grid,
which is 21-by-21.

The grid width includes the space between characters. The grid height is for the
height of an upper-case letter.

Font 0 is a non-proportional font. That is, most characters are of the same
width, though certain special characters are wider. All the other fonts use pro-
portional spacing — the widths of the characters vary, just as in the text of this
manual.

All fonts contain all 94 printing ASCII characters. Fonts 0 and 2 contain
C-PLOT’s full special-character set, which is illustrated at the end of this chapter.
Each other font except Gothic contains versions of the Greek letters and some of
the special characters.

Note that high-resolution, multiline fonts may not be appropriate with low-reso-
lution graphics devices or small character sizes.

See Appendix B for the character set available with each font.

Adding Text 43

sy select plotting symbol
controls the type of symbol or line used to draw a plot. Any character from the
current font can be used as a symbol in addition to the special symbols and line
types built into C-PLOT.

sy
or
sy symbol

If select symbol is entered with no argument, the current symbol code is printed
with a list of the codes for selecting symbols and line types. You can enter a new
symbol code or a character. If a symbol code or character is given as an argu-
ment, no message is printed.

Any character can be used as a plotting symbol. The table below shows the
codes for selecting special symbols and line types. Code 9 , a dot, is the default.

Plotting symbols

To use a numeral or one of the upper-case letters used as a code in the table
above as the plotting symbol, precede it with a backslash, \ . If the characters c
or z are used as symbols, they must also be preceded with a \ because of their
special meaning to the key (see gk , below). To use any other character as a plot-
ting symbol, enter it as an argument to sy or when prompted.

Symbols, except for lines, may be inserted within text by using the four-charac-
ter sequence \[##, ## is 00 for symbol 0 (a circle), 10 for symbol 10, etc.

Lines may be inserted into text using the three-character sequence *X, where
substituting A for X selects line-pattern A (dotted), B selects line pattern B (short
dashed), etc.

The pattern length of dashed and dotted lines can be adjusted using the set
parameter command described below.

44 Chapter 6

gk enter symbols and text for plot key
lets you enter text for an explanatory key (or legend) to your plotting symbols.
The key is drawn within the plot window using the draw key (pk and zk) com-
mands described in Chapter 6.

gk

Enter key will prompt you to enter lines of text for the key. Normally you will
enter a symbol or character according to the coding used with the sy command.
Insert one space after the symbol code and then enter the desired explanatory
text.

For example,
PLOT-> gk
Enter symbols and text for up to 16 lines of the key.
Hit <return> for no change. Hit <ˆD> to end.
KEY? 0 Our Data
KEY? B Our Theory
KEY? 4 Their Data
KEY? A Their Theory
KEY? ˆD EOF

PLOT-> zeak 60u 90

will produce:

If you type the letter c before the symbol code, you will be prompted to change
pens when the key is drawn on the plotter. If the first character on a line is z ,
no symbol will be drawn and the explanatory text will be drawn starting at the
center of the symbol column.

The maximum text length for each line of the key is 64 characters, and you can
have at most 16 symbols in the key.

Adding Text 45

tx enter text for plot labels and title
lets you add text for the title and axis labels.

tx
or
tx t|x|xu|y|yu|z|zu [text ...]

The title will be drawn above the plot window and the labels along the appropri-
ate axis. Units will be indicated following the labels in square brackets (or
parentheses or APS style — see ty , described in Chapter 5).

With no arguments, you will be prompted to enter a title, then labels and units
for each axis. The axis labels are entered separately from the units, allowing
C-PLOT to insert a scaling factor, if necessary, between the label text and the text
describing the units.

If you enter a single argument such as t , you will be prompted to enter just the
title. If you enter x , y or z as an argument, you will be prompted for the axis
label and units. Adding a u to the axis letter means you will be prompted just
for the units. You also can enter the text on the command line following the
argument. For example,

PLOT-> tx t this is the title

Use the cs command to control the dimensions of the characters. Use the spe-
cial sequences shown at the end of this chapter to insert special characters in
the text.

In the following example, text entered by the user is enclosed by quotes. C-PLOT
inserts the square brackets and the scaling factor on the x-axis.

Plot title and labels

46 Chapter 6

If you don’t enter a unit string and if there is no scaling factor for the axis, there
won’t be any brackets. Certain plot-formatting options selected with the ty com-
mand affect how the scale factor is drawn: ty 64 selects parentheses around the
scale factor. ty 1024 selects APS style. (See Chapter 5 for details.)

When you enter tx , the current text will be shown in parentheses. Entering
nothing and pressing <return> will leave the current text unchanged. Typing
\<return> will clear the current text.

The maximum number of characters in a title or label line is 256. Each charac-
ter of a special sequence is counted, but spaces and tabs at the beginning of an
entry will be disregarded unless the line begins with a \ .

The text strings cannot be edited. They must be re-entered entirely. If you are
using complicated subscripts, superscripts or other special sequences, you might
find it more convenient to read the text in from a command file (see Chapter 10)
created and edited with your favorite text editor.

se set parameters
allows you to control certain plot parameters.

se
se dash [dash_length]
se spacing [vert_spaces]
se tl [tick_length_percent]
se xtl [x_tick_length_percent]
se ytl [y_tick_length_percent]
se ztl [z_tick_length_percent]
se do_dir [cmd_file_directory]
se fn_dir [function_directory]
se gd_dir [data_directory]
se sigfig [number_of_digits]

The se command lets you change the values of several C-PLOT parameters. If
you type se by itself, you will be prompted to enter values for each of the set-
table parameters. You can then type a new value or enter <return> to use the
current value.

If you type se and the name of a settable parameter, you will be prompted for a
new value for just that parameter. You also can directly type the parameter
name and value on the command line.

The settable parameters currently are:

dash — controls the pattern length of the dashed and dotted lines drawn when
the plot symbol is A , B , C , D , E or F . The default pattern length is 1 C-PLOT mil-
limeter. The dash-length value is restored to the default value when you enter
the reset command, re .

Adding Text 47

spacing — controls the spacing used between lines of text drawn as annotation
or as the plot key. The units of this parameter are the height of the text. The
default value — 1.5 times the text height — is restored when you enter the reset
command, re .

tl — lets you control the length of the tick marks. The value specifies the
length of the long tick marks as a percentage of the length of the longest axis.
By entering a value for tl , you turn on the mode where the tick marks for all
the axes are the same length. This mode is the default and is set by the reset
command, re , as is the default value of 1.5 percent.

xtl , ytl , ztl — let you control the lengths of the tick marks for each axis inde-
pendently of the other axes. The value is the percentage of the length of the axis
along the direction the tick marks point. By entering a value for any of these
parameters, you turn on the mode where the tick marks for each axis are scaled
independently. The reset command, re , turns off this mode.

do_dir — contains the name of the directory used to look for command files with
the do command when a file isn’t in the current directory or you haven’t speci-
fied a path name that contains a slash character. The default value is taken
from the value of the environment variable CPLOT_DO_DIR , if that exists. Other-
wise, the default value is $CPLOTHOME/cmdfiles. The parameter may contain a
colon-separated list of directories, in which case each directory is checked in
turn for the file. The value of do_dir is not changed by the reset command, re .

fn_dir — contains the name of the directory to use for private user functions
with the fn command. The default value is taken from the value of the environ-
ment variable CPLOT_FN_DIR , if that exists. Otherwise, the default value is
$HOME//functions. The value of fn_dir is not changed by the reset command,
re .

gd_dir — contains the name of the directory used to look for data files with the
gd command when a file isn’t in the current directory and you haven’t specified a
path name that contains a slash character. The default value is taken from the
value of the environment variable CPLOT_GD_DIR , if that exists. Otherwise, the
default value is . , the current directory. The parameter may contain a colon-
separated list of directories, in which case each directory is checked in turn for
the file. The value of gd_dir is not changed by the reset command, re .

sigfig — controls the maximum number of significant figures contained in the
axis numbers printed on the plot. The default value is six significant figures.
The reset command, re , restores the default value.

48 Chapter 6

yg set gap between y-axis and label
lets you vary the distance between the y-axis and its label. This command is
useful for lining up y-axis labels when several plots are grouped vertically on the
same page.

yg
yg 0
or
yg value

The y-gap is the space between the y-axis and the axis label. Normally it is set
so the label is just to the left of the tick numbers. By turning on the y-gap mode
using this command, you can specify the number of character spaces to leave
between the y-axis and the label.

The yg command toggles the y-gap mode. If it is toggled on, the user is
prompted to set the number of character spaces between the label and the axis.
Entering yg0 turns the y-gap mode off. Entering yg value turns the y-gap
mode on and sets the gap to the specified number of character widths. The num-
ber need not be an integer.

Using special characters
The cs command sets text size and orientation, but C-PLOT offers more
advanced options for tailoring the text design to your needs.

For matting sequences

You can change many characteristics of the text by using special sequences
embedded in the text. The backslash \ introduces all special sequences. The
simple formatting sequences are:

Sequence Meaning

\u Move up half a line
\d Move down half a line
\l Make text 25% larger
\s Make text 25% smaller
\r Move up a whole line
\b Move back one space
\| Move forward 1/6 a space
\ˆ Move forward 1/12 a space
\B Move back 1/2 the width of the previous character

Adding Text 49

The following examples illustrate the use of these special sequences (also using
some sequences described next):

Notice that the size changes to make the “2” superscript smaller and larger
occur before and after the up and down movement. This is because the extent of
vertical motion depends on the character size — the command cm\s\u2\l\d
would not return to the same baseline, since the up motion is done at a smaller
character size than the down motion.

Delimited special character sequences

Some of the following special sequences take decimal parameters, represented
by the variable N . The first character before N . becomes the delimiter. Scan-
ning for N . continues until either a matching delimiter or non-digit, non-sign or
non-decimal-point character is found. The delimiter can be any character.

Sequence Meaning

\h’N’ Move horizontally (12 units per character width;
negative is left)

\v’N’ Move vertically (12 units per line; negative is up)
\S’N’ Change character size (in percent; neg. is smaller)
\T’N’ Set character angle (in degrees; negative tilts left)
\R’N’ Rotate text baseline (in degrees; negative is coun-

terclockwise)
\P’N’ Select pen number N
\H’N’ Move N spaces horizontally from beginning of line
\V’N’ Move N lines vertically from beginning of line

\W’text’ Move horizontally the width of text

Although the text rotation sequence, \R ’N’, may be included in titles and labels,
C-PLOT makes no adjustments to center the rotated text or keep it from colliding
with other parts of the plot.

50 Chapter 6

The last three commands are especially useful with the proportionally spaced
fonts, when you want to line up text in columns or do overstrikes such as under-
lining. With proportionally spaced fonts, you don’t necessarily know how wide a
particular string of text will be. As an example, consider this annotation text
produced by the fit user functions described in Chapter 11:

\H@13@\W@-Linear @Linear = 4.02\(+-0.83

The \H@13@ sequence positions the equals sign 13 character units from the anno-
tation’s start. Then the \W@-Linear@ sequence backs up the width of the text
before printing it. The minus sign is part of the \W syntax and indicates the
motion is to be to the left. The @ symbol is used as the sequence delimiter.

Special characters

Special characters — scientific, mathematical or foreign — are denoted with a
four-character sequence. Each sequence begins with \(and ends with a two-
character code for the special character. Here is a list of the special characters
and the last two characters of the four-character sequences. (Please note that
not all characters are available in all fonts. Appendix B shows which characters
are available in each font.)

Adding Text 51

Greek characters

Four-character sequences beginning with \(* denote Greek letters. The fourth
letter of the sequence is the Roman letter that corresponds to the Greek letter.
The following table shows the correspondence.

Accent marks

The sequences shown below automatically back-space and add the accent marks
shown to lower-case letters:

Miscellaneous sequences

Finally, there are these remaining special character sequences:

Sequence Meaning

\f# Change to font #
\fP Change to previous font
\C Center annotation text within plot window
*g Insert name of current data file
*X Insert line segment corresponding to symbol, where

X is A, B, C, D, E, F or L
\[## Insert symbol, where ## is 00 for symbol 0, etc.
\\ A single backlash, \
\X X, any character not in this or previous tables

The \C sequence must appear at the start of a line of annotation.

52 Chapter 6

Cha pter 7 Drawing the Plot

This chapter includes explanations of the commands for drawing plots:

on the pen plotter
on graphics-filter devices

Chapter 8 describes how to initialize the pen plotter, while Chapter 9 shows how
to initialize filters for the other graphics devices. The pen-plotter versions of
drawing commands described below begin with a p ; the graphics filter versions
begin with a z . In both cases, many of the commands can be grouped together
by following the initial p or z with the appropriate letters. For example, palt
will draw axes, labels and the title on a pen plotter.

Commands covered

p, pz, z or zz draw complete plot
pa or za draw axes
pp or zp draw points
pb or zb draw error bars
pl or zl draw axis labels
pt or zt draw title
pn or zn annotate
pk or zk draw key
pd or zd place date in corner

p, pz, z, zz draw complete plot
instructs C-PLOT to draw a complete plot using the ranges, text and data you
have entered.

p or pz
or
z or zz

The p and pz commands will draw the full plot on the pen plotter. The z and zz
command will draw the entire plot on the screen, printer or other graphics
device selected with initialize graphics filter, zi , described in Chapter 9. The z
and zz commands are actually shorthand that groups the individual commands
zealtpb . Likewise, p and pz are shorthand for paltpb .

Drawing the Plot 53

pa, za draw axes
draws the axes and axis numbers on the pen plotter or graphics filter.
pa or za

No parameters are used. The axes and axis numbers are drawn using the cur-
rent range and type settings. (See ra , ro and ty , Chapter 5.) Note that if the
axes have a scale factor, you must draw labels (pl zl) for the scale factor to be
drawn.

pp, zp draw points
draws just the points for a given set of data.

pp or zp

No parameters are used. The points will be drawn without labels, title or axes.

If data is being obtained using gd 11 , gd 12 or gd 14 to read files of indefinite
length, the entire data file will be read automatically in sections as large as the
program can hold at one time and the data plotted. If real-time plotting is
selected with gd @ , C-PLOT will keep reading points from the file until termi-
nated as described in Chapter 3.

pb, zb draw error bars
puts error bars on the plot.

pb or zb

No parameters are used. If you intend to use error bars with a particular set of
data, be sure the error-bar mode is on when you read in the data from a file.

The vertical width of the top and bottom horizontal segments of the y and z error
bars is taken from the symbol width set using the cs command. The height of
the vertical segments of the x error bars in 2D mode is taken from the symbol
height set using the cs command. If the symbol height or width is larger than
the error bar, no error bar will be drawn, unless the current symbol type is sym-
bol 9, a dot, in which case the symbol size is ignored.

If data is being obtained using d 11 , gd 12 or gd 14 to read files of indefinite
length, the entire data file will be read automatically in sections as large as the
program can hold at one time and the error bars plotted.

54 Chapter 7

pl, zl draw axis labels
draws the current labels, entered using the tx command, on the pen plotter or
graphics filter.

pl or zl

Both the labels and units are drawn. The units will be enclosed by square
brackets or parentheses, depending on the plot-type option selected with the ty
command (see Chapter 5). If a scaling factor is needed for the axis numbers, it
is drawn within the brackets or parentheses, preceding the units. The units will
be enclosed by parentheses and the scaling factor will be positioned according to
APS conventions, if selected with the ty command.

The labels, along with the corresponding units and scale factor, will be drawn
centered along the appropriate axis.

The labels also are drawn when p , pz , z or zz are entered.

pt, zt draw title draws the title entered with the tx command on the pen
plotter or graphics filter.

pt or zt

No parameters are used. The title is drawn centered above the current plot window.
The title also is drawn with the p , pz , z and zz commands.

pn, zn annota te
lets you copy text line by line, either directly from the keyboard or from a file, to
any location on the plot page. With the annotate command you can put clarify-
ing information on your plots or create text-only documents using C-PLOT’s vari-
ous fonts and font-control features.

pn
pn horz_offset vert_offset [filename]
pn xbox ybox zbox [filename]
or
zn [same options]

After entering pn or zn , you can enter annotation text one line at a time, with
each line drawn or displayed when you enter <return> . At the end of each line
of text the drawing position advances down the page a fixed amount of space,
adjustable using the set parameter (se) command (see Chapter 6). The default
spacing is 1.5 times the character height. When you are finished entering text,
enter ˆD .

By entering values following pn or zn , you can position the annotation anywhere
on the page. In 2D mode, if offset parameters are present, the annotation will
begin horz_offset centimeters to the right and vert_offset centimeters down

Drawing the Plot 55

from the upper-left corner of the plot window. If one or both of the values
entered for the offsets ends with the letter u , the offset values will be inter-
preted in data units corresponding to the axis numbering rather than in cen-
timeters. Annotation text can be positioned outside the plot window.

In 3D mode, offsets not in data units are in box units (see bo , Chapter 5). Box
units run from 0 to 1 for positions inside the 3D cube. At present, 3D annotation
can only be placed in the x-z plane.

If offsets are absent, the annotation will be drawn or displayed starting at the
default or the previous annotation starting point. Pen-plotter users may reposi-
tion the pen using the plotter controls. When the annotation is drawn based on
the last-used starting position, that position is remembered in terms of its
actual location in the plot window, not data units. The last-used position is for-
gotten when the window is changed (wi) or the plot is turned (tu).

The default starting position for annotation text in 2D mode is h = 0.125 ×
x_length and v = 0.125 × y_length, where x_length and y_length are the dimen-
sions of the plot window. The default starting position for annotation text in 3D
mode in box units is x = 0.125, y = 0 and z = 0.125.

Each line of input text starts a new line on the plot unless the input line ends
with a \ . Since the maximum length of an input line is 255 characters and an
input line may include formatting characters that will not be drawn, you may
need more than one input line to create a single line of text on the plot. Ending
a line with a \ lets you string input lines together.

Beginning a line with \C will center the line horizontally in the window.

An initial \ is required to enter initial blank spaces from the keyboard because
C-PLOT normally strips away blank spaces at the start of a line. Changing char-
acter size within a line does not change the line spacing. If you use special char-
acter sequences, the size and slant of the characters are reset to their original
values after each input line.

pk, zk draw key
draws the key, entered using gk , in the upper-left corner of the plot window or in
another position you specify.

pk
pk horz_offset vert_offset
pk xbox ybox zbox
or
zk [same options]

With no parameters, the key will be drawn starting at the default or the previ-
ously used position. You can use the plotter controls to move the pen to another

56 Chapter 7

position before drawing the key, or you can position the key by entering values
after the pk or zk command.

In 2D mode, if offsets are given as arguments, the key will be drawn horz_off-
set centimeters to the right and vert_offset centimeters down from the upper-
left corner of the window. If one or both of the values entered for the offsets end
with the letter u , the numbers are interpreted in data units corresponding to
the axis numbering rather than in centimeters.

In 3D mode, offsets not in data units are in box units (see bo , Chapter 5). Box
units run from 0 to 1 for positions inside the 3D cube. At present, the 3D key
can only be placed in the x-z plane.

The default starting position for the key in 2D mode is h = 0.125 × x_length and
v = 0.125 × y_length, where x_length and y_length are the dimensions of the plot
window. The default starting position for the key in 3D mode in box units is x =
0.125, y = 0 and z = 0.125.

When the key is drawn based on the last-used position, that location is remem-
bered in terms of its actual place in the plot window, not in data units.

The position used last is forgotten when the window is changed (wi) or the plot
is turned (tu).

The spacing between lines can be adjusted using the set parameter command
(see Chapter 6). The default spacing is 1.5 times the character height.

pd, zd place date in corner
puts the current time and date in a corner of the page.

pd
or
zd

No parameters are used. The current date and time in the format Tue May 26
22:19 1992 is drawn in the corner of the page. The location is fixed, though you
can vary the size and style of the lettering using the character size (cs) com-
mand (see Chapter 6). The location is chosen so that if the plot is put into a
standard notebook, the date will appear right-side up in the upper-right corner
of the page, whether the plot is in landscape or portrait mode (see tu , Chapter
5).

Where to put arguments when string ing commands together
You can combine several drawing commands on one command line, but don’t put
spaces between the command characters. Any character following a space on
the command line will be treated as an argument. Annotate and drawkey

Drawing the Plot 57

described in this chapter, and select pen velocity, described in the next, can all
take arguments. You must put the arguments after a single string of characters
grouping all the commands together. For example,

pvaltnk vel an_hor an_ver an_file key_hor key_ver

will supply the pen velocity, the position and file for the annotation and the posi-
tion for the key. First come the commands, then come the arguments.

You have to insert place holders for arguments you don’t want to supply. The
place-holder character is a − . A single − will hold the place of all the position
arguments to a command (two in 2D mode and three in 3D mode) for annotate
and draw key. For instance,

pvaltnk vel − an_file key_hor key_ver

will instruct the annotation command to act as it does when it is entered with-
out position arguments.

You only need place holders if you have to put arguments past the place holders.
For example, if you just want to set the pen velocity and supply the position for
the annotation, you can enter

pvaltnk vel an_horz an_vert

58 Chapter 7

Cha pter 8 More Plotter Commands

This chapter discusses special commands for:

initializing the pen plotter
selecting pens
selecting the pen drawing speed

Commands covered

in open and initialize pen plotter
rp release pen plotter
p# select pen
pv select pen velocity
pw don’t move pen off page
px or ps move pen off page

in open and initialize pen plotter
opens an input-output channel to the pen plotter. Once you have opened the
plotter using this command, you will be able to use the drawing commands to
make plots. Invoking this command when the plotter is already opened reini-
tializes the plotter.

in [device] [baud]
or
in m

Without an argument, in attempts to establish an input-output channel with
the name assigned to the variable DEVICE in the cplot_config file. If the device is
on a serial interface, the baud rate is also taken from the variable BAUD in that
file. (See Appendix A for an explanation of the cplot_config site-initialization
file.) You also can select the device name or baud rate or both by entering them
as arguments after in . Once the device or baud rate is selected as an option to
in , C-PLOT disregards the values from the cplot_config file.

If you enter in m , the program assumes the pen plotter is sharing a serial line
to the computer with your terminal. This only works with pen plotters that
implement eavesdropping mode and have been connected to the terminal and
computer with a special Y-cable. (The switch on the back of plotter with the
markings D and Y should be in the Y position for eavesdropping mode.)

When not using eavesdropping mode, the program treats serial and GPIB (Gen-
eral Purpose Interface Bus) interfaces differently. The interface used is

More Plotter Commands 59

established in the cplot_config file according to the value of the variable GPIB .
With a serial interface, the program uses ioctl() system calls to set the baud rate,
turn off echoing, turn on XON-XOFF flow control and so on for the line to the plot-
ter. (The tty modes of the serial line are reset to their initial values when
C-PLOT exits or the plotter is released.) The baud rate is taken from the value of
BAUD in the cplot_config file. When the device is opened, the program sends out
special HP-GL commands to configure the serial interface on the plotter. The pro-
gram does not do anything to configure a GPIB interface.

The following paragraphs describe the sequence of events when C-PLOT opens
and initializes the pen plotter. From this list, you may be able to determine
what is going wrong when the program cannot open the plotter.

1) C-PLOT tries to open the special file whose name (for example, /dev/plotter) is
given in the cplot_config file or as an argument to the in command. The open
can fail if the name doesn’t exist, the name isn’t a character-type special file, you
don’t have read and write permission for that special file or the device has been
locked by another user (if your system uses the exclusive use method of locking).

2) C-PLOT checks to see if the plotter has been locked using the lockf() system
call (if your system uses this method). If the plotter is locked, you will not be
able to gain control until it has been unlocked by the other user. Otherwise, the
program locks the plotter to keep other users off.

3) If the serial interface is used (but not in eavesdropping mode), the baud rate
and line modes are set.

4) For serial devices, a reset message and the handshake parameters are sent.

5) A message is sent asking the plotter to output its error status. If the plotter
doesn’t respond within three seconds, C-PLOT assumes there is no plotter and
tells you so.

6) C-PLOT asks the plotter for more information about itself, including the size of
the maximum plotting area. Subsequent plots drawn using a graphics filter will
be scaled so that the plotter’s maximum plotting area will be mapped onto the
filter ’s maximum plotting area.

rp release pen plotter
ends C-PLOT’s connection with the plotter, allowing another user to gain control.

rp

In a multiuser system with locking or exclusive use in effect, only one user at a
time can be using the plotter.

60 Chapter 8

p# select pen
changes the pen used for drawing on the pen plotter. Since many pen plotters
have more than one pen, you may have pens of different thicknesses or different
colors installed.

p#

No arguments are used. For the # sign, enter an integer greater than or equal
to zero and less than 1,000 to identify the pen position. (Higher pen numbers
are interpreted by graphics filters to control other features, such as line width.)
Refer to your pen plotter manual to see how pens are numbered. When select-
ing one or more pens as part of a string of plotting commands, insert the pen
numbers in the string rather than including them as arguments. For instance,
p2alt1p uses pen 2 to draw the axes, labels and title, and pen 1 to draw the
points.

The p# command is comparable to the select filter line style command, z#,
described in Chapter 9.

pv select pen velocity
controls the drawing speed on the pen plotter. The quality of the lines on the
plotter depends on the drawing speed and acceleration of the pen. You may
sometimes want to draw plots quickly, at the expense of well-inked lines, or you
may want to slow the pen for better quality lines. This command has no effect
on graphics filters.

pv velocity
or
pv −1

With no parameters, the current pen velocity is printed and you are prompted
for a new value.

The numeric velocity parameter you select is sent literally to the pen plotter.
Positive values give the drawing speed in centimeters per second. A negative
value generally selects the maximum velocity of the pen plotter, but at higher
pen acceleration. The default value for pen velocity is 10 centimeters per sec-
ond.

More Plotter Commands 61

pw don’ t move pen off page
leaves the pen-plotter pen positioned above the last commanded drawing loca-
tion.

pw

Normally, after pen-plotter drawing commands are executed, C-PLOT commands
the plotter to replace the pen in its home (often capped) position. If you are
drawing a single plot with multiple commands, you can save time by having the
pen remain over the plot.

The pw command is comparable to the leave filter open command, zw , described
in Chapter 8.

px, ps move pen off page
returns the pen-plotter pen to its home position and, on plotters so equipped,
ejects the current page and feeds a new one.

px or ps

Both px and ps have the same effect — each returns the pen to its home position
if the plotter had been previously instructed to leave the pen over the page with
the pw command. On plotters with automatic paper feed, px or ps may be used
to force a new page. The move pen off page commands can be compared with the
close filter commands, zx and zs , described in Chapter 9.

62 Chapter 8

Cha pter 9 Gra phics Filter Commands

In this chapter you will find instructions for:

initializing, opening and closing graphics filters
erasing old plot material from graphics filters
controlling the echoing of commands

Commands covered

zi initialize graphics filter
zf select filter
sc select filter scaling factors
z# select filter line style
ze erase old plot
zE erase current window
zq don’t write text to screen
zw don’t close filter yet
zx close filter
zs close filter, synchronous

Type <return> twice with z commands

All the z commands except ze require you to enter a second <return> at the
keyboard before the PLOT-> prompt will again be displayed. This feature accom-
modates filters displaying graphics on terminals that have a distinct graphics
mode and that erase the graphics when put back into text mode. You can view
the graphics display, then enter the second <return> to get back to text mode.

The current graphics filter isn’t necessarily associated with the screen. If you
are using a printer filter and enter a z command and <return> , nothing will
appear on the screen and the plot won’t be sent to the printer until you enter the
second <return> .

zi initialize graphics filter
starts a process to interpret the z commands for graphics devices.

zi
or
zi filter [filename | @spool_opts] [filter_opts]

When no parameters are entered with zi , a list of the files in $CPLOTHOME/fil-
ters is displayed and you can enter the name of the filter program you want to

Graphics Filter Commands 63

use. The name of the last-used filter, or if there is none, the default filter, also
will be shown. You may enter <return> to use that filter or enter the name of
the desired filter.

Giving the file or device name filename as the first argument after filter
switches the standard output of the filter to filename . (Note that filename
can’t begin with − or @ character.) You might use this option to redirect video
displays to another terminal or to put output destined for a printer into a file to
be sent to the printer at a later time. For example,

zi psfilter plot.ps

sends the output of psfilter to the file plot.ps.

Although filters that have output destined to be printed (or spooled) are usually
already configured to send that output to a particular printer, you may override
the default spooling commands by using the @spool_opts feature. For exam-
ple,

zi psfilter @lp @-dlaser @-s

sends the output of psfilter to the lp spooling command lp with the options
-dlaser -s . Otherwise, the spooling command is taken from the file
$CPLOTHOME/filters/spoolers. If there is none specified there, the compiled-in
spooling command, if present, is used. If no spooling command is specified with
any of those three methods, the filter output is written to the screen.

If you enter any of the z commands before initializing a filter with zi , you will
be prompted for a filter name. Again, entering <return> will invoke the filter
displayed, or you may enter a different filter name and then <return> .

Before a new filter process is begun, the program waits for the previous filter
process (if any) to terminate. If you enter zi and C-PLOT is waiting for the pre-
vious filter process to terminate, typing a ˆC will return the program to the
PLOT-> prompt. Entering another zi will kill the previous filter process without
waiting for it to terminate normally. You may want to terminate a filter to kill a
misbehaving filter program or to abort a plot when you don’t want to wait for it
to be completed.

The filter also is killed when C-PLOT exits; the program is designed to clean up
all subprocesses and temporary files it has created. To make sure a filter associ-
ated with a printer has finished processing its input, type zi before exiting the
program. The program will wait until the current filter has finished and then
prompt for a new filter name. You can hit <return> and then exit the plot pro-
gram. Alternatively, use the zs command (described below) to synchronize filter
termination with the plot program.

64 Chapter 9

Some filters, such as those that generate PostScript or HPGL-2, recognize com-
mand line options. For example,

zi psfilter plot.eps -eps -color

places encapsulated color PostScript in the file plot.eps.

The filters reside in $CPLOTHOME/filters. If filter includes a / , the name is
taken as an absolute or relative path name. The names of the filters are arbi-
trary, and each site is free to rename the installed filters.

zf select filter
lets you maintain up to eight active graphics filters.

zf
or
zf#

Entering zf alone selects the next filter in the sequence from 1 to 8. If the cur-
rent filter is 8, filter 1 is selected. zf1 selects filter 1, zf2 selects filter 2, etc. If
no filter is active when a zf command is entered, C-PLOT will prompt for a filter
to be specified. Filter 1 is the default.

Once a filter is selected, it remains the target of z commands until another is
chosen.

sc select filter scaling factor s
informs C-PLOT of the exact size of the graphics filter device in use.

sc
or
sc short_side long_side

With no parameters, you are prompted to enter the lengths in centimeters of the
short and long sides of the current graphics filter device’s maximum plotting
area. You can also give the two values on the command line. When the correct
values are entered, the centimeter units used by the commands cs , wi , pn , zn ,
pk and zk will be accurate on the filter plot.

Entering values of 0 will restore the default scaling, which maps the entire pen-
plotter plotting area to the maximum plotting area available on the graphics-fil-
ter devices.

If the graphics-filter drawing area is set smaller than the pen-plotter area, it is
possible to generate plots that run off the graphics-filter page, as the window
commands operate with respect to the pen-plotter plotting area.

Graphics Filter Commands 65

z# select filter line style
changes the line width or color of lines drawn using certain graphics filters. The
effect of the command depends on the particular graphics-filter program,
although most adhere to the conventions described at the end of this chapter.

z#

No arguments are used. For # , enter an integer greater than or equal to zero.
When selecting one or more line styles as part of a string of plotting commands,
insert the numbers in the string rather than including them as arguments. For
instance, z2alt1p uses style 2 to draw the axes, labels and title, and style 1 to
draw the points.

The z# command is comparable to the select pen command, p # , described in
Chapter 7.

ze erase old plot
clears from the graphics filter any plot, or parts of a plot, that have been drawn
using the commands that begin with z . If the graphics filter is associated with a
video screen, the screen will be erased.

ze

If you have already drawn a filter plot or any of its elements using z , zz , zp , za
or related commands (see Chapter 7), you can use ze to clear the memory of the
old plot elements and begin fresh with a new plot. Although z and zz will auto-
matically clear away old plot material before drawing a fresh plot, the other fil-
ter commands simply overwrite the existing material.

zE erase current window
erases the area within the current window

zE

The position and size of the area to be erased can be set with the wi command.
The color of the erased area is set to the current background color.

There is no comparable command for the pen plotter.

zq don’ t wr ite text to screen
stops C-PLOT from echoing to the screen the characters you type at the key-
board, and it stops the program from printing any messages on the screen for as
long the filter is open.

zq

The zq , or quiet-mode, command is useful with some filter programs that use

66 Chapter 9

the terminal as their display device. The command prevents C-PLOT messages
from becoming interspersed with graphics commands sent by the filter process
or, if applicable, it prevents the filter display from being overlaid with messages
generated by C-PLOT.

In quiet mode, your terminal will not echo the characters you type at the key-
board. C-PLOT will not print messages on the screen; only the output of graphics
filters will be displayed. The quiet-mode state is passed to user functions (see
fn), and you can arrange for them not to write to the screen when quiet mode is
on. However, output from a subshell (see u) will be written to the screen.

If the filter is being kept open with the zw command, once quiet mode is turned
on, it will stay on until the filter is closed with the zx or zs commands, another
filter is initialized with the zi command, you interrupt a command with ˆC or
you exit the plot program.

Quiet mode is usually necessary with filters such as 4010 and 4014. Quiet mode
is not enforced when plotting on the pen plotter.

zw don’ t close filter yet
keeps the graphics device open while you build up a complex plot with multiple
drawing commands.

zw

Complex plots having multiple data sets, windows, annotations, etc. are put
together by entering zw before the drawing commands. When all elements of the
plot have been drawn, a close filter command, zx or zs , explained below, is used
to complete the plot.

When the do not close filter yet option is used, the filter will stay open until a zx
or zs command is entered, another filter is initialized with the zi command, you
interrupt a command with a ˆC or you exit the plot program.

When zw is used in conjunction with printing devices, the plot will not be sent to
the printer until a close filter command is issued. Display terminals that have
distinct graphics and text modes will remain in graphics mode until a close filter
command is entered.

The zw command is comparable to the don’t move pen off page command, pw ,
described in Chapter 7.

Graphics Filter Commands 67

zx close filter
tells the filter process that the current plot is finished.

zx

If the filter is associated with a printer, zx will send the current plot to the
printer. You generally use zx to close a filter after using zw to keep it open.

On video terminals that maintain separate displays for text and for graphics, zx
is the recommended command for switching from text to graphics in order to
view an existing plot. Typing a second <return> will return the screen to text
mode.

zs close filter, synchronous
tells the filter process that the current plot is complete, like zx , but it also
causes C-PLOT to pause until the filter is finished writing to your terminal.

zs

The synchronization option is useful for filters that write graphics commands to
your terminal over the same serial line as ordinary text. Graphics commands
from the filter program may get garbled with text from the plot program. The
synchronized close, zs , stops this intermingling of output. As an example,
zqzkds draws the plot, key and date with quiet mode on and prevents the
PLOT-> prompt from being issued until the last graphics command has been sent
to the terminal. As with zx , a second <return> will return you to text mode.

68 Chapter 9

Pen number ing

C-PLOT graphics filters are written to conform to the pen-numbering conventions
described in this section. These conventions allow a command file to produce
consistent plots on pen plotters, laser printers and mono or color video monitors.

The plot program itself doesn’t distinguish among pen numbers (except to ignore
numbers greater than 1000 when selecting the pen-plotter pen). The number
entered with the z# command is simply passed on to a graphics filter. The code
in each filter can use or ignore the pen number, depending on the device charac-
teristics. Not all pen numbers will be functional on all filters.

Line-width values are interpreted in C-PLOT basic units, where there are 40
basic units in 1 C-PLOT millimeter. A line width of zero should select the
thinnest line available on a device.

The following table shows the recommended correspondence between pen num-
ber and attribute:

0-999 drawing colors 4000-4999 line widths
1000-1999 white-fill fill colors 5000-5999 symbol outline widths
2000-2999 black-fill fill colors 9000-9999 flags
3000-3999 background colors 9100-9900 filter-dependent flags

The colors associated with pen numbers 1000 through 3999 modulus 1000 are to
be the same as the colors associated with pen numbers 0 through 999.

Pens 0, 1000, 2000 and 3000 track the background color assigned with pens
3002-3999. By drawing with pen 0, you can erase previously drawn portions of
the plots. Pens 1, 1001, 2001 and 3001 track the foreground color assigned with
pens 10-999.

The following 9000-series flags have been defined:

9001 turns symbol filling on
9002 turns symbol filling off
9003 turns black-filled symbol outlines on
9004 turns black-filled symbol outlines off
9999 resets all attributes to startup default values

When symbol filling is on, the interior of the symbols is painted solidly with the
fill color. When off, white-filled symbols show through what is underneath, and
black-filled symbols are colored by drawing a grid of lines. The startup default
is to have symbol filling on.

The white-filled symbols are those selected with the sy command using symbol
codes 0, 1, 2, 3, 8, 12, 14-28. The black-filled symbols have symbol codes 4, 5, 6,

Graphics Filter Commands 69

7, 10, 11 and 13. White-filled symbols are always outlined by the current line
color. Black-filled symbols are outlined with the current background color or not
at all if the no-outline flag has been selected. The startup default is to have
black-filled symbol outlines drawn.

The following pen color assignments are standardized for color display devices:

0 — background 5 — yellow
1 — foreground 6 — cyan (blue-green)
2 — blue 7 — magenta (blue-red)
3 — red 8 — white
4 — green 9 — black

The colors for VGA and EGA graphics on 386 and 486 PC computers are as fol-
lows:

0 — black 9 — black
1 — bright white 10 — light blue
2 — blue 11 — light green
3 — red 12 — light cyan
4 — green 13 — light red
5 — yellow 14 — light magenta
6 — cyan 15 — brown
7 — magenta 16 — gray
8 — bright white 17 — white

70 Chapter 9

The colors available on X Windows, SunView, color PostScript and HP-GL follow:

0 — white 38 — olive drab
1 — black 39 — medium sea green
2 — blue 40 — med. spring green
3 — red 41 — pale green
4 — green 42 — sea green
5 — yellow 43 — spring green
6 — cyan 44 — yellow green
7 — magenta 45 — dark slate gray
8 — white 46 — dim gray
9 — black 47 — light gray

10 — aquamarine 48 — gray
11 — med. aquamarine 49 — khaki
12 — blue 50 — magenta
13 — cadet blue 51 — maroon
14 — cornflower blue 52 — orange
15 — dark slate blue 53 — orchid
16 — light blue 54 — dark orchid
17 — light steel blue 55 — medium orchid
18 — medium blue 56 — pink
19 — med. slate blue 57 — plum
20 — midnight blue 58 — red
21 — navy blue 59 — Indian red
22 — sky blue 60 — medium violet red
23 — slate blue 61 — orange red
24 — steel blue 62 — violet red
25 — coral 63 — salmon
26 — cyan 64 — sienna
27 — firebrick 65 — tan
28 — brown 66 — thistle
29 — sandy brown 67 — turquoise
30 — gold 68 — dark turquoise
31 — goldenrod 69 — medium turquoise
32 — light goldenrod 70 — violet
33 — green 71 — blue violet
34 — dark green 72 — wheat
35 — dark olive green 73 — yellow
36 — forest green 74 — green yellow
37 — lime green

Colors 75 to 175 are 101 shades of gray from black to white.

Graphics Filter Commands 71

72 Chapter 9

Cha pter 10 Command Files

In this chapter you will find:

instructions for making files that contain sequences of commands that will
run C-PLOT
an explanation of how to pass arguments to these command files how to use
the command files to run the program in batch mode (in the background)
how to make the program interpret graphics filter instructions as pen-plot-
ter instructions and vice versa, using the same command file in both cases.

Commands covered

do take commands from a file
mk make a command file
em end making a command file
sf save current format
ch change target of drawing commands
w wait for user to enter <return>

do take commands from a file
instructs C-PLOT to take input from an ASCII file. This command file may con-
tain frequently used or complicated sequences of commands. The text in the file
is in the same format as if the commands had been typed from the keyboard.

do [cmd_file]
or
do cmd_file arguments ...

Command files contain characters and newlines in the same sequence that you
would type at the keyboard. Command files can be nested — that is, a command
file can invoke other command files — up to four deep. If the argument
cmd_file is the single character . , the same file as last time is used.

Without parameters, do will print the name of the current command file and
prompt for the name of a new command file. You will not be able to pass argu-
ments if you specify the command file this way.

Command Files 73

Instructing the program to execute a command file by typing docmd_file
changes the prompt from PLOT-> to plot1-> . The number 1 indicates the level
of nesting. The commands in the file cmd_file will then be executed in
sequence. When the commands in the file are exhausted, program input reverts
to the keyboard, except for the case of an ex command in the file, which will
immediately terminate the plot program.

A command file can be invoked when entering the program by giving the name
of the file as an argument in the shell command line. This feature lets you run
the program as a background process. See “Running In Batch Mode” at the end
of this chapter.

Command files can be created with make command file, mk ; save current format,
sf ; or a text editor.

Which director y?

When a file name is entered for the command file, C-PLOT first looks for that file
name in the current directory. If it can’t find the file there, and if the file doesn’t
contain the / character, C-PLOT looks in the directory given by the shell variable
CPLOT_DO_DIR in your environment. If that variable is not found in the pro-
gram’s environment, the directory $CPLOTHOME/cmdfiles is checked to see if it
contains cmd_file . CPLOT_DO_DIR can contain a colon-separated list of directo-
ries, in which case C-PLOT will look for the file in each directory in turn.

Ar gument substitution

The argument-substitution feature lets you pass arguments to the command file,
making it possible to vary parameters each time you use the file. As C-PLOT
reads the file, strings in the command file of the form $1 , $2 and so on will be
replaced by arguments entered with the do command. For instance, if the com-
mand file named cmd_file contains the lines

gd 2 data.$1
wi $2 $3 5 5

and you type on the command line do cmds 32 2 3 , the plot program will get
data from the file data.32 and place a 5cm × 5cm window 2cm from the left and
3cm from the bottom of the page.

Up to nine arguments may be passed to the command file on the command line.
The variable $0 is replaced by the name of the command file. On the command
line, arguments are separated by spaces, except that double quotes may be used
to group several words as a single argument. Literal double quotes and dollar
signs may be passed as \" and \$.

74 Chapter 10

Points to remember

The control characters ˆD or ˆN should be represented in the command file by
the combination of the printing characters ˆ and D or N instead of the literal con-
trol characters. However, the two-character sequences are only interpreted as
control characters if they appear as the first two characters on a line.

When using command files, remember that commands that toggle states or plot-
ter functions (eb , vt , etc.) should be used to select a known state by giving an
argument of 0 or 1 . Otherwise, the command will simply toggle the function to
the opposite state, which may not be the one desired.

The ra and ro commands need differing numbers of input lines, depending on
the prior input. For instance, if you use ra x to set the range of only the x-axis
and there is data present, you will be asked if you wish to have the y-axis
ranged for the included points. If there is no data present, the question won’t be
asked. Or, if you select user-defined tick spacing with ro , you will be prompted
for the spacing specifications.

When the commands wi , pn or pk are used without arguments to specify the
window size or pen position, the program will not pause to let you set those val-
ues on the pen plotter.

To create a file that includes the argument-substitution feature, you will proba-
bly have to use an editor rather than the mk command, since the characters $1 ,
etc., will be treated literally by the plot program. If, for example, you enter ty
$1 $2 $3 at the keyboard, the program will prompt you for plot types since it
won’t recognize the arguments as valid numbers.

When the plot command gd 7 is encountered during execution of a command
file, input reverts to the keyboard. You may enter the appropriate commands for
this get-data mode from the keyboard, and input will revert back to the com-
mand file when you exit the mode.

Likewise, when the subshell command, u , is encountered, input again reverts to
the keyboard and stays there until you exit the subshell.

Ordinary user functions (but not necessarily fits) are unable to take input from
command files, although there are provisions for passing information to the
functions on the command line (see Chapter 11).

Typing a ˆC during execution of a command file or while making a command file
will terminate the command or make-file mode and the PLOT-> prompt will
reappear. However, a ˆC during a type 5 (fitting) user function invoked from a
command file will leave you within the fit interactive program. If the command
file had turned on quiet mode with the zq command, the ˆC will not only leave
you within the fit, but terminal echo mode will be off. Type ex or ˆD to exit the
fit and return to the plot program. Echoing will be turned back on. Certain

Command Files 75

errors also will bring back the PLOT-> prompt, such as trying to initialize a
nonexistent filter with zi .

Within user functions, you also can abort a command file by invoking the macro
set_error() (see Appendix E). A command file can be run when C-PLOT is first
invoked by giving the name of the file as an argument in the shell command
line.

When invoking type 5 (fitting) user functions from a command file, you can
arrange to have the fitting function read commands from cmd_file for a while
and then have control returned to C-PLOT. If cmd_file contains the lines

fn fitfunc.5 −
...
ex

or (to use the same fitting function as last time)
fn −
...
ex

the commands between the fn and ex will be executed by the fitting function.
Any commands following ex will be read by C-PLOT.

mk make a command file
provides a means for automatically creating a command file.

mk cmd_file

Typing mkcmd_file changes the prompt from PLOT-> to making-> . Commands
will be executed as they are entered.

Everything typed from the keyboard will be saved in cmd_file , with a few
exceptions. Input to the gd 7 command will not be saved, nor will input to sub-
shells or to user-defined functions, including fits, unless the fits are invoked with
the — argument described above. When you enter any of these commands,
nothing you type will be saved in the command file until you are finished with
the command. For example, a u command will create a UNIX subshell, where
you may manually execute normal processes. When you return to the plot pro-
gram on exiting the shell, subsequent commands will continue to be saved in the
command file.

It is not possible to do a command file while making another command file or to
execute an mk command from a command file. A do command can be inserted
into the file being made, but that command file will not be executed until the
parent command file is executed.

Most users employ a text editor for creating and maintaining command files, but
sometimes find the mk command useful for creating a first draft. The save

76 Chapter 10

current format command, described below, provides an alternative starting point
for making command files.

em end making a command file
puts you back into normal mode when making a command file using the mk com-
mand.

em

A ˆD also will return you to the normal mode. The em is inserted in the com-
mand file but ignored when the command file is read.

sf save current for mat
saves the current plot-format information in a file.

sf [cmd_file]

The command and formatting parameters of the current plot will be written to
cmd_file in a form suitable for use as an input command file.

Typing sf by itself will list the current state of the plot-format parameters on
the screen.

ch change target of drawing commands
causes all subsequent graphics filter z commands, whether entered from the
keyboard or a command file, to be treated as pen plotter p commands, or vice
versa.

ch
or
ch z|p|0

With no arguments, C-PLOT indicates whether or not the commands are being
changed. A z argument causes HP-GL plotter p commands to be treated as
graphics filter z commands. A p argument does the reverse. An argument of 0
makes the p and z commands work normally. When changing from z to p , the
erase command, ze , the window erase command, zE and the quiet command, zq ,
are ignored. When changing from p to z , the select pen velocity command, pv , is
ignored.

You may, for example, wish to use a graphics filter to display the plot on a video
terminal while developing a command file. When the command file is fine
tuned, you can use the change target command to make the plot program substi-
tute pen-plotter p commands for the z commands when it executes the command
file.

Command Files 77

The ch command also can be useful for debugging a z -based command file, by
changing the target of the drawing command to the pen plotter with no pen plot-
ter initialized. In this case, nothing will be drawn, but you will be able to
observe error messages on the screen that might otherwise be obscured by
graphics. Also, quiet mode (invoked by the zq command) doesn’t turn off print-
ing of messages when the pen plotter is the drawing target.

w wait for user to enter <return>
is useful when running command files that produce multiple plots. The w com-
mand gives you a chance to make the program pause so you can view each plot
in turn.

w

The w command sends a beep to the terminal, prompts with
Hit <return> to continue

and waits until you enter a <return> or newline. When C-PLOT detects that it is
running in the background, the command does nothing. The <return> must
come from the keyboard whether or not C-PLOT is taking commands from a com-
mand file.

Running in batch mode
Batch mode means C-PLOT is run as a background process taking input from a
command file. Usage is:

cplot [-s] cmd_file [command_file_args] [</dev/null]

The −s option silences C-PLOT’s output, except for error messages, which are still
written to the standard error stream.

The optional </dev/null ensures that C-PLOT can detect it is running in the
background. When C-PLOT is running in the background, the w command and
other interactive commands are disabled.

Presumably you will want to direct the output somewhere other than to the
screen of the terminal you are working on. From the Bourne shell (/bin/sh),
you could type:

cplot ... >/dev/null 2>&1 &

This form directs the standard output to the UNIX sink (/dev/null), where it
won’t be seen again and directs the error output (attached to file descriptor 2) to
join the standard output (file descriptor 1). Alternatively, you can direct both
output streams to a regular file, or direct the streams to two different destina-
tions.

78 Chapter 10

From the Berkeley C-shell (/bin/csh), you can direct both output streams in the
following fashion:

cplot ... >&record_file &

In this example both streams are directed to a file.

If you invoke C-PLOT with a command file, but in the foreground, the program
will revert to interactive mode when the command file is exhausted, unless the
command file contains the exit command, ex . An ex in a command file always
terminates the program.

Command Files 79

80 Chapter 10

Cha pter 11 Using User Functions

This chapter describes the user function facility and includes instructions for
writing and running your own functions.

Commands covered

fn run user function 1
f# run user function 1 to 8

How user functions wor k

User functions run as separate processes under the control of C-PLOT and
exchange data and other information with the plot program. (See Appendix C
for a list of standard user functions.)

You needn’t know very much about programming to create your own functions.
Prototype C-language files are included with the C-PLOT package, along with the
required overhead modules. C-PLOT creates the files, invokes your favorite edi-
tor and runs the compiler for you. For ordinary functions you need only type in
the lines of C code that describe your calculation. Appendix E contains addi-
tional information on writing user functions.

Using User Functions 81

There are five types of user functions. The type number becomes part of the
function name. The types are:

Type Arithmetic Description

1 y = f(x) Simple — You give the range for x.
x = f(t)

2 y = g(t) Parametric — You give the range for t.
r = u(t) (In 3D mode, change r to z.)
s = v(t)
x = f(x, y, r, s)

3 y = g(x, y, r, s) Operation — Transforms current data.
r = u(x, y, r, s) (In 3D mode, change r to z.)
s = v(x, y, r, s)

4 Other — You supply data (current
data is available).

5 Non-linear fitting — See Chapter 12.

Where user functions reside

Standard locations for user functions are the public function directory,
$CPLOTHOME/functions, and your private function directory. The latter is set by
the environment variable CPLOT_FN_DIR or by using the set fn_dir command
within CPLOT_FN_DIR . If not explicitly set, the default private function directory
is $HOME/functions, or if HOME is also not set, ./functions.

When you specify a function name in the commands described below, the pro-
gram searches for the function according to the following rules.

1) If the function name contains a / , the function path is implied in the name,
as in /users/moe/func.1 or ./func.2.

2) If the function exists in your private function directory that version will be
used.

3) If there is an executable by the chosen name in the public function directory,
that function will be used.

4) Otherwise, a new function will be created in your private function directory.

Public functions

Public functions are located in the directory $CPLOTHOME/functions. The func-
tions in the public directory can’t be edited or compiled in the usual way. Either
executables can be copied to the public directory or the functions can be invoked
according to rule 1 above.

82 Chapter 11

Editor s

C-PLOT will automatically invoke an editor when you create or modify a user
function. If you have the environment variable EDITOR set, that editor is used.
Otherwise, the default editor, vi, is used.

How does it wor k?

For each type of function, a prototype file is copied from $CPLOTHOME/prototypes
and given the name you selected. The prototype contains skeleton C subrou-
tines and help information appropriate for the function type you selected. You
are then put into your chosen editor. On exiting the editor, the shell script
$CPLOTHOME/bin/makefunc is run from the function directory. That file nor-
mally invokes the C compiler to compile your module and link it with the appro-
priate overhead modules. If your user function contains the string cplot_com-
pile: followed by commands to compile your function, those commands are used
instead of the default commands from makefunc. The commands can refer to
the make utility or invoke the C compiler directly. Possible ways of including
the information in a function source file are:

/*
* cplot_compile: make my_func.5
*/

or
#if 0

cplot_compile: make my_func.5
#endif

Compiling user functions outside of C-PLOT

The C-PLOT package includes a shell script named newfunc that lets you compile
functions outside the plot program. When you type newfunc to the shell without
arguments, all the files in your current directory that end in the characters .1.c
through .5.c will be compiled and linked with the proper overhead modules and
libraries to create executable user functions. You also can specify files as argu-
ments, giving either name.# or name.#.c file names.

The newfunc script invokes makefunc, described above. You can examine the
makefunc shell script to see the flags, modules, include directories and make
libraries needed to compile user functions if you are interested in constructing
makefiles to maintain your user functions.

Using User Functions 83

fn, f# run a user function
User functions provide a general purpose interface to read in data, generate new
data or modify current data. With user functions, you also can control many of
the features of the plot, including values of the axis ranges and the text used for
plot labels.

In the simplest case, you give the program the name of a function and its type,
and the program leads you through the creation, editing and compiling of the
function.

fn
fn name.# [start finish intervals]
fn name.#.c
fn .
fn c
fn e
fn k
fn ?
f1 (same options)
or
f# (same options)

With no arguments, these commands prompt you for the function type and the
function name. If the function is not found using the search rules described
above, you are asked if you wish C-PLOT to create a new prototype. If the proto-
type already exists, but not in an executable version, you are asked if you wish
to edit the prototype.

If the executable version exists, but the date of the prototype is more recent
than the executable, you are asked if you wish to recompile the prototype. Oth-
erwise, the executable version is run.

If, when the user function returns, it is found to be not compatible with the cur-
rent version of C-PLOT, you will be informed. You should then recompile the pro-
totype.

If you wish to first edit an existing function, specify the name with the .c exten-
sion and the program will invoke the editor.

If you already have a function running, typing fn . will return you to it. The
program will automatically start up the editor for the current function if you
type fn e . If you type fn c the program will automatically recompile the cur-
rent function.

If a function dies unnaturally on receipt of a signal (floating point exception, seg-
mentation violation, etc.), C-PLOT will print a message informing you of that fact
along with the number of the signal.

84 Chapter 11

Type 1 and 2 functions require a range on which to calculate the data. If you
don’t enter the starting value, finishing value and number of intervals on the
command line, you will be asked for them. Note that the number of points gen-
erated is one more than the number of intervals. For type 1 functions, the range
is in the independent variable, x. For type 2 functions, the range is for the para-
metric variable, t. In either case, if you specify a negative number for the num-
ber of intervals, the spacing of the points over the range will be logarithmic.

When type 1, 2 and 3 functions are executing, typing a ˆC will cause each point
to be printed out. Typing a second ˆC will cause an immediate return from the
function. A single ˆC makes a type 4 function return immediately.

When you type fn name.# , the function starts executing from scratch.

C-PLOT lets you keep eight functions going independently. The fn command is
synonymous with f1 . The f2 command refers to the second function. The f3
command refers to the third function, etc., up to f8 . Typing fn k kills the cur-
rent function process. The ? option displays the function number, process ID
number and name of each active user function.

See Appendix E for more information on writing type 1 through 4 functions. For
examples of user functions, see the source code for C-PLOT’s standard included
functions in $CPLOTHOME/functions .

Type 5 functions, the nonlinear least-squares fits, are described in detail in
Chapter 12.

Using User Functions 85

86 Chapter 11

Cha pter 12 Fitting

In this chapter you will find a summary of the features of the non-linear least
squares fitting package. The last section of the chapter explains in detail how to
create your own fitting function.

Commands summary
The fit functions are interactive processes in their own right. Some of the com-
mands recognized by the fits work the same way as the corresponding C-PLOT
commands. Those unique to the fit process are explained in this chapter. A
table of all the available commands is presented on the following page.

As in the plot program, all fit commands are one- or two-letter mnemonics. In
table that follows, italic parameters are to be replaced with the appropriate
characters for the desired instruction. Optional parameters appear in square
brackets. When several parameters are shown separated by vertical lines, you
use only one of them with the command. For commands that simply indicate
options, consult the detailed command description for an explanation of the syn-
tax.

Fitting 87

Command Description

2d|3d Select data exchange mode
cd [directory] Change directory1

ch [p#=value ...] Calculate chi squared
do [cmdfile] Take commands from file1

em End making a command file1

er Erase the video screen1

ex Exit the fit program1

fc Set fit criteria and fit options
fi [options] Fit the data points3

fv [value] Set fit verbosity
gd [options] Get data points2

gp Get parameter values
h Get on-line help1

lm [# [low high]] Set parameter constraints
md [x [y]] [o] [p#=v ...] Make data
mk cmdfile Make a command file
mr [x [y]] [/] [p#=v ...] Make residuals
pg [x [y]] Get points from the plot program4

ps [x [y]] Send points to the plot program4

ra [0|#] Select range to fit
rp [file|. [#]] Read parameters from a file
sa [file[a|w]] Save data points1,3

sA [file[a|w]] Save plot points3

sf [file[a|w]] Save full parameters1,3

sF [file[a|w]] Save full parameters and errors3

sp [file[a|w]] Save parameters3

sP [file[a|w]] Save parameters and errors3

u [command] Create a subshell1
vp Select parameters to vary
wt [i|s|n|u] Select how to weight data points

1The commands cd , do , em , er , ex , h , sa and u use the same syntax as the plot program. Con-
sult the previous chapters for descriptions.
2The gd command uses the same syntax as the plot program but only implements modes 1, 2 and
3. Provisions are made for reading additional independent variables if the user’s function
requires them.
3The commands fi , sA , sP , sF , sa , sf and sp can have their output directed to a file in addition
to the terminal screen. The syntax is

cmd cmd_options > filename
cmd cmd_options >> filename

The first example will open filename for writing, and the second will append to filename. In
either case, if filename is the single character . the same file is used as before, and the output is
appended.
4The commands pg and ps are only available when the fit process is run as a user function from
the plot program.

88 Chapter 12

Introduction to the fitting package
The fits are normally run as type-5 user functions, and you should refer to the
general description of user functions (the fn command) in Chapter 10. The com-
mand-file facility in fit is identical to that in C-PLOT. When invoking fits from
plot command files, you can have a separate command file for the fit function, in
which case you would enter from the plot program:

fn fitfunc.5 cmd_file cmd_file_args ...

The command file should terminate with an ex to ensure that control passes
back to the plot program at the end of the command file.

Alternatively, you can include the fit commands in the C-PLOT command file
using the syntax:

fn fitfunc.5 −>
...
ex

All the commands between the fn and ex will be executed by the fit function. To
continue running the current function you can use:

fn −
...
ex

The fits also can be run as independent processes from the shell.

An explanation of the nonlinear least-squares fitting algorithm used in this soft-
ware, the Marquardt algorithm, can be found in chapter 11 of the book Data
Reduction and Error Analysis for the Physical Sciences by Philip R. Bevington
(New York, McGraw-Hill, 1969).

2d, 3d select data exchange mode
sets how the fit data points will be exchanged with the C-PLOT data points.

2d
3d

Two sets of data points are maintained: those used for fitting and those
exchanged with C-PLOT and used for plotting. When the fit is configured for
more than one independent variable, these commands affect how the fit data
points are assigned to C-PLOT data when using the md , mr and ps commands and
how the C-PLOT data is assigned to the fit data with the pg command.

If the fit is configured with only one independent variable, only 2D exchange
mode is available.

In 2D exchange mode, the default independent variable for transferring data for
the pg , ps , md and mr commands is x1. To use a different variable, specify its

Fitting 89

number on the command line. The ps , md and mr commands set C-PLOT x, y and
possibly (with mr and ps) y error-bar values — C-PLOT x error bars are set to 0.
For the pg command, only values for one independent variable are read in. The
values of the other independent variables, if any, are left unchanged. When
there is more than one independent variable, the md command increments each
from the entered starting value to the entered finishing value.

In 3D exchange mode, the default independent variables for exchanging data
are x1 and x2. To use different variables, specify their numbers on the command
lines to pg , ps , md and mr The ps , md and mr commands set the C-PLOT z data
from the fit dependent variable. For the md command, you can set the range and
the number of intervals for the two independent variables to be transferred to
the C-PLOT x and y data. You enter constant values for any other independent
variables. Depending on the ranges and number of intervals give for the inde-
pendent variables, the trajectory in the x - y data sent to C-PLOT can form a grid
or a line. When making a grid of data, line-control information is added to that
data so that when the data points are drawn with lc mode on and a line symbol
selected, the line will be restarted each time y = ymin.

ch calcula te chi-squared
lets you calculate a value for chi-squared based on the current parameters with-
out fitting the data.

ch [p#=value ...]

The calculated value will be displayed when you enter any of the save-parameter
commands.

fc set fit criter ia and fit options
lets you change certain details concerning how the program does the fits and
presents its output.

fc

When you enter the fc command, the program asks you a number of questions.
Entering <return> after a question retains the default value, which is printed in
parentheses. Otherwise you can enter new information. Entering ˆD returns to
the interactive prompt.

90 Chapter 12

Weighting the data

The first question asks you how to weight the data. The possible ways to weight
the data are given in the table below.

Mode Weight

Statistical wi = 1/√ yi
Instrumental wi = 1/σi
Other wi = 1/yi
None wi = 1

Remember, you must re-enter the data whenever you change the method of
weighting. (You also can select how to weight the data using the wt command.)

Number of iterations

Next, the fc command prompts for the maximum number of iterations to allow
before stopping the fit. The number of iterations also can be set on the com-
mand line to fi with the n=value option.

Style of printout

The next question asks if you wish to change the printout verbosity. You can
choose to have the parameter correlation matrices printed out at each iteration,
only after the last iteration or not at all. You also can choose to have the support
plane and non-linear confidence limits calculated and displayed after the last
iteration. These calculations can be obtained at any time using the undocu-
mented fp command whether or not you select the option here. The style of
printout also can be set with the fv command.

Taylor series fits

If you wish to have the fit only use the Taylor series expansion, you can choose
that here. This mode bypasses the entire Marquardt algorithm.

Convergence and statistical parameters

Finally, you are asked if you wish to change the statistical criteria. These vari-
ables are concerned with certain details of the fitting algorithm and don’t nor-
mally need to be altered.

The first variable you can change is the starting value of the Marquardt algo-
rithm compromise parameter, λ. This parameter controls how much of the gra-
dient search versus how much of parabolic expansion is used to determine the
direction of the search. The larger λ is, the more the algorithm uses the gradi-
ent search.

Fitting 91

The next variable is the minimum value allowed for λ. It won’t be permitted to
go lower than the value selected here.

When the program calculates the derivative of the fitting function numerically
with respect to a fitted parameter bi, it uses values of the function at bi and at
(1 + δ)bi. You can enter here a value to use for δ . The default value is 0.00001.

The next two values, ε and τ, are important in deciding at what point the fit has
converged. They are used in a convergence test that is satisfied if for each
parameter bi and parameter increment δ bi,

δ bi / (τ + bi) < ε .

The parameter increments are the changes in the value of each parameter from
the prior iteration. τ mostly functions to prevent division by zero. The default
value for both is 0.001.

The parameter γ measures the angle between the direction of steepest descent of
the χ 2 hypersurface and the direction of the current iteration. When γ falls
below the critical value set here, the course of the fitting algorithm changes as
described below under fi .

The value of the matrix singularity variable lets you adjust how small the deter-
minant of the parameter correlation matrix can be before giving up on the fit.

The last two variables, ff and tt, are concerned only with the quantities on the
final printout obtained with the fp command.

fi fit the data points
starts the fitting algorithm using the current data.

fi [[+|−] # ...] [p#=value ...]
[n=value] [f#=value] [t#=value]
[L#=value|none ...] [U#=value|none ...]

All the options to fi can be selected using other commands.

Single numbers, represented by # , indicate which parameters to vary. In addi-
tion, +# means add parameter # to the ones being fitted, while −# means don’t
fit parameter # . The vp command also can be used to select the parameters to
vary. Values for fixed parameters and initial values for fitted parameters can be
set using the p#=value syntax, where the # represents the parameter number.
The gp command can be used to enter the same information.

The maximum number of iterations is set using n=value. This value also can
be set using the fc command.

You can set the range of the independent variables using the ra command or you
can choose the range for each independent variable by entering f#=value to set

92 Chapter 12

the lower limit for independent variable number # and t#=value to set the
upper limit. You can set only the from-value or only the to-value if you like. If #
is not specified, independent variable number 1 is used.

Parameter constraints can be set with the lm command or by entering
L#=value as an argument to fi where # is the parameter number. Replace
value with none to turn off constraints. Use U#=value or U#=none for the
upper constraint.

Descr iption of the fit output

For the example that follows, the sample data is listed under the sa command
below. The fitting function is the fit to a line that appears in the prototype mod-
ule, described at the end of this chapter.

Before the first iteration of the fit, the program prints information in the follow-
ing format:

July 6, 1992
Fitting 11 points. 2 parameters varied. 0 fixed. Phi = 514.9.

Number Name Is fit? Deriv? Initial Value
0 Constant term YES YES 0.1
1 Linear term YES YES 0.9

Phi (Φ) is the sum of the squares of the differences between the y-values of the
data points and values calculated with the current parameters. The table lists
the parameter number, name, whether or not that parameter is being fit,
whether or not the user function supplies an analytic derivative for that param-
eter and the starting value for that parameter.

A typical fit produces output in the form:
Iteration #1 Phi = 10.02 Chi-Squared = 1.114
11:01pm (0.2u 0.1s) Lambda = 0.01 Gamma = 23.68 Step = 17.38

0 Constant term = 15.5308 delta = 15.4308
1 Linear term = 3.63904 delta = 2.73904

Iteration #2 Phi = 9.792 Chi-Squared = 1.088
11:01pm (0.3u 0.3s) Lambda = 0.001 Gamma = 64.35 Step = 2.964

0 Constant term = 10.4579 delta = -5.07289
1 Linear term = 4.00195 delta = 0.362915

Iteration #3 Phi = 9.792 Chi-Squared = 1.088
11:01pm (0.5u 0.4s) Lambda = 0.0001 Gamma = 1.533 Step = 0.1285

0 Constant term = 10.2319 delta = -0.226027
1 Linear term = 4.01728 delta = 0.0153272

Convergence by epsilon test in 4 iterations.

Fitting 93

Iteration #4 Phi = 9.792 Chi-Squared = 1.088
11:01pm (0.6u 0.6s) Lambda = 1e-05 Gamma = 0.0179 Step = 0.00056

0 Constant term = 10.2309 delta = -0.000984272
1 Linear term = 4.01735 delta = 6.6703e-05

Chi-squared (χ 2) is simply Φ divided by the number of degrees of freedom (the
number of fitted points minus the number of fitted parameters). The numbers
in parentheses after the time of day are the cumulative user and system CPU
times for this fit.

Lambda (λ) is the current value of the Marquardt compromise parameter.
Gamma (γ) represents the angle between the direction of the gradient at the cur-
rent point on the χ 2 hypersurface and the direction taken during this iteration.
Step is the distance in scaled parameter space traveled during this iteration.

At each iteration for each fitted parameter the current value of the parameter is
printed along with the change in its value from the last iteration.

The iterations cease when either the iteration limit is reached or one of the con-
vergence criteria is satisfied. The possible convergence messages are:

Convergence by epsilon test. The ε test is the usual convergence test and is
performed after each iteration where Φ has decreased for the given value of λ.
The test is satisfied if, for each parameter bi and parameter increment δ bi,
δ bi / (τ + bi) < ε, where the values of τ and ε are set with the fc command.

Convergence by gamma-epsilon test. If Φ hasn’t decreased but γ has fallen
below the critical value established with the fc command, the parameter incre-
ments are continually halved and the ε test is performed. If the test is satisfied,
you will see this message. If Φ has increased with the halved increments, the
previous values of the parameters will be maintained and you will see the mes-
sage “Correction vector for last iteration not used”. If the ε test is not satisfied
and Φ decreases with the halved increments, the fit will proceed to the next iter-
ation.

Convergence by gamma-lambda test. If Φ has decreased but γ has exceeded
90 degrees and λ has exceeded 1, this message is printed. The message might
more appropriately read “non-convergence”, since the conditions causing this
message generally indicate a pathological situation possibly caused by errors in
the model equation or inappropriate values for the current parameters or the
data.

Typing ˆC while fitting halts the fit and restores parameters to their values as of
the last completed iteration.

94 Chapter 12

fv set fit verbosity
controls how much information is displayed while fitting.

fv [mode]

Without arguments, you are asked what information you want displayed during
the fitting. The numerical value displayed after you have made your selections
can be entered as an argument to fv the next time to make the same selections.
The fit verbosity also can be set using the fc command.

gp get parameter values
is one way to enter new values or restore old values for the parameters.

gp

You can use gp to change the values of parameters one by one, as prompted by
the program. The current values and initial guesses (as compiled into your C-
module) are printed for each.

Before being prompted for new values, you are asked if you wish to restore
either the compiled-in initial values or the previous values, that is, the values
used before the last attempt at fitting with the fi command.

lm set parameter constraints
lets you set or vary lower and upper constraints on the parameters during fit-
ting.

lm
or
lm [# [low high]]

With no arguments, you are prompted for lower and upper constraints for each
of the adjustable fit parameters. You can enter information for just one parame-
ter by giving the parameter number as an argument and, optionally, the con-
straints, on the command line. Entering the literal characters none for the
lower or upper constraint removes the constraint at that end of the range.

The default values for the parameter constraints are set in the C code for your
fitting function. You also can enter values for the parameter constraints on the
fi command line.

During fitting, a parameter with constraints will not be allowed to move past
the constrained value. If the fit converges with a parameter at a constrained
limit, an error message is included in the fit results.

Fitting 95

md make data
generates points over a selected range, or one-to-one with your data, and sends
the points to the plot program.

md [x [y]] [o] [p#=value ...]

Without arguments, you enter starting and finishing values and the number of
intervals as prompted by the fit program. Entering a literal min or max sets the
starting or finishing value to the data minimum or maximum. Points are gener-
ated that will become the plot program’s current data. If you include the o argu-
ment, you are not asked for a range and points are calculated at the current val-
ues of the independent variables for each data point.

You can select which independent variable (if there is more than one) to send to
the plot program by entering a value for x for transferring 2D data or values for
x and y for transferring 3D data.

You also can set values for parameters using the p#=value notation, where the
represents the parameter number.

In 2D exchange mode, when there is more than one independent variable, each
is incremented from the entered starting value to the entered finishing value.
In 3D exchange mode, you set the range and number of intervals for two inde-
pendent variables. Depending on the values entered, the trajectory in the x-y
plane can be a line or a grid. In the case of a grid, line control information is
added to the generated data, so that if drawn with lc mode on and a line sym-
bol, the pen will be lifted between each ymax and ymin. Any other independent
variables in 3D exchange mode are held at constant values that you also can
enter.

When running the fit as a stand-alone process, the generated points can only be
used with the sA command, described below.

mr make residuals
lets you send to the plot program data representing the scatter in the data
points left after subtracting the fitted values.

mr [x [y]] [/] [p#=value ...]

The values the make residuals command sends to the plot program are the dif-
ferences between fit’s current data points and points calculated from the model
equation using the current values for the parameters. If you include the / argu-
ment, each difference is divided by the calculated value of your model at each
point.

96 Chapter 12

You can select which independent variable (if there is more than one) to send to
the plot program by entering a value for x for transferring 2D data or values for
x and y for transferring 3D data.

You can set values for parameters using the p#=value notation, where the #
represents the parameter number.

When running the fit as a stand-alone process, the generated points can only be
used with sA command.

pg get points from the plot program
copies C-PLOT’s current data points to fit’s data points.

pg [x [y]]

C-PLOT has many more ways of reading in data than the fit function. Entering
pg replaces the current set of points in the fit function with those from the plot
program, setting the weights according to the current weight mode.

Only as many points as will fit will be transferred. You select how many fit
points are allowed at the top of the prototype C-module for your fit. (See the sec-
tion “Adding your model equation to the prototype” at the end of this chapter.)

You can select which independent variable (if there is more than one) receives
the plot x data by entering a value for the x argument in 2D exchange mode. In
3D exchange mode, you can enter x and y arguments to indicate which indepen-
dent variables receive the plot x and y data.

The pg command is only available when the fit process is run as a type-5 user
function from C-PLOT.

ps send points to the plot program
copies the current set of fit points to C-PLOT.

ps [x [y]]

You can use ps to send the points you have been fitting to the plot program. Val-
ues for the error bars are calculated from the current weights. You can select
which independent variable (if there is more than one) to send to the plot pro-
gram by entering a value for x for transferring 2D data or values for x and y for
transferring 3D data.

The ps command is only available when the fit process is run as a type-5 user
function from C-PLOT.

Fitting 97

ra select range to fit
lets you fit a portion of the current data. You can enter minimum and maximum
values for each of the independent variables.

ra [0|#]

When you enter ra , the program determines the minimum and maximum val-
ues for each independent variable, prints them, and then prompts for minimum
and maximum values for the fit range.

The command ra 0 sets the ranges to include all the current data. When you
have multiple independent variables, you can range just one of them by using
the # option.

Once set, the ranges stay in effect even after new data is read in.

rp read parameters from a file
lets you restore the values of parameters that were saved to a file using the sp ,
sP , sf or sF commands.

rp
rp filename [set_num]
or
rp . [set_num]

You normally use one of the save-parameter commands (sp , sP , sf or sF)
described below to create the file that is to be read. The names of the parame-
ters in the file must match the names in the fit you are running, although values
will be read and assigned until a discrepancy in the names is found.

With the . option, the parameters will be read from the same file you used the
last time you entered the rp command.

If there is more than one data set in the parameter file, you can select which will
be read by entering the set number as an argument.

If you are going to edit a save-parameter file and then use rp to read it back in,
you must not change the characters in the parameter names. Initial and trail-
ing spaces around the parameter name are ignored, however, in the comparison
of the current parameter names and the names in the file.

sA save plot points
lists the current plot points to the screen or to a file.

sA
or
sA filename [a|w]

The plot points are those created by the commands ps , md and mr and copied to

98 Chapter 12

the fit data points with pg . With this command you can, for example, create
data sets from your model equation with different parameter values using md
and save the data to a file without having to return to the plot program. The
syntax of sA is the same as that for sa described next. Three or four columns of
data are displayed depending on whether 2D or 3D exchange mode is in effect.

sa save data points
lists the current data points to the screen or to a file, just as its does in the plot
program. There is a difference in the format, though, when the points are writ-
ten to the screen.

sa
or
sa filename [a|w]

Refer to the description of sa in Chapter 3 for an explanation of this command.
The difference in screen format from the plot program version of sa is shown in
the following example. (The data presented here is used in the straight-line fit
examples elsewhere in this chapter.)

x y weight yfit residual
10 48.9343 0.142953 50.4044 0.210153
11 56.32 0.13325 54.4217 -0.252944
12 53.9749 0.136114 58.4391 0.607637
13 67.6994 0.121537 62.4564 -0.637217
14 73.7787 0.116422 66.4738 -0.850451
15 80.0557 0.111765 70.4911 -1.06898
16 69.4587 0.119988 74.5085 0.605915
17 64.9841 0.12405 78.5258 1.67984
18 72.0632 0.117799 82.5432 1.23454
19 99.7246 0.100138 86.5605 -1.31823
20 98.2006 0.100912 90.5779 -0.769229

The second to last column is the value calculated using the model equation and
the current parameters. The last column is the weighted residual, wi (yi - yfiti).

The sa command in the plot program produces the following for the same data.
10 48.9343 6.99531
11 56.32 7.50469
12 53.9749 7.34678
13 67.6994 8.22795
14 73.7787 8.58944
15 80.0557 8.94734
16 69.4587 8.33417
17 64.9841 8.06126
18 72.0632 8.48903
19 99.7246 9.98622
20 98.2006 9.90962

Here the third column is the error-bar value rather than the weight (which is
the inverse of the error-bar value).

Fitting 99

sp, sP, sf, sF save parameter s
The save parameters commands let you write out the current parameters to the
screen or to a file in several formats.

sp
sp filename [a|w]
or
sP, sf and sF (same options)

With no arguments, sp , sP , sf and sF all write the current set of parameters to
the screen in the same format as the last iteration of the fit. The meaning of the
values printed is explained under the command fi . The commands sP and sF
print out the calculated errors in the fitted parameters, rounding the fitted
parameter values to two significant figures of the error. The commands sp and
sf don’t print the errors, but do print out six significant figures of each parame-
ter.

With a filename argument, the format produced by these commands is quite
different and is intended to be used with the annotation feature of the plot pro-
gram. The command sp filename writes to the file:

\H@13@\W@-\(*x\u\s2\b\l\d @\(*x\u\s2\b\l\d = 1.088
\H@13@\W@-Constant term@Constant term = 10.2309 \(lh
\H@13@\W@-Linear term@Linear term = 4.01735 \(lh

which, when interpreted by C-PLOT by typing pn filename , writes on the plot:

The hand symbols indicate which were the fitted parameters.

The formatting sequences on the parameter lines will make the equals signs line
up when used with the annotation command, even with nonproportional fonts.
The delimiter character @ used in the formatting sequences cannot be used in
your parameter names, without causing problems for the rp command and for
the user function fitpar.4 described in Appendix C.

100 Chapter 12

The command sP filename produces:
\H@13@\W@-\(*x\u\s2\b\l\d @\(*x\u\s2\b\l\d = 1.088
\H@13@\W@-Constant term@Constant term = 10.\(+-12.
\H@13@\W@-Linear term@Linear term = 4.02\(+-0.83

which, when interpreted by C-PLOT by typing pn filename , writes on the plot:

The command sF filename produces:
Fit 11 points with ‘line.5’
Fit to a line: y = c + m * x
Statistical weights
Converged by \(*e test (\(*e = 0.001)
10 \(<= x \(<= 20
\H@13@\W@-\(*x\u\s2\b\l\d @\(*x\u\s2\b\l\d = 1.088
\H@13@\W@-Constant term@Constant term = 10.\(+-12.
\H@13@\W@-Linear term@Linear term = 4.02\(+-0.83

which, when interpreted by C-PLOT by typing pn filename , writes on the plot:

The first line includes the name of the fitting function. The second line is a com-
ment set in the prototype file. The third line indicates the method of weighting.
The fourth line shows how the fit terminated. The next line or lines show the
range of each of the independent variables. (In this example there is just one.)

The output from sf filename is similar, but the errors are not printed with the
parameters.

By indicating a or w after the file name, you tell the program either to append to
the file or to write over the current contents of the file. If the file already exists,
you must explicitly indicate you wish to write over the file, otherwise the file will
not be changed.

Fitting 101

The output format that appears on the screen also can be directed to a file using
the >filename syntax, as explained in the notes to the list of commands at the
beginning of this chapter.

The public user function fitpar.4, described in Appendix C, lets you read a file
containing many parameter sets created using any of the save-parameter com-
mands to produce plots of any parameter versus any other.

vp select parameters to var y
provides one way to choose which parameters are to be fit.

vp

The vp command lets you choose one by one which parameters to fit. You also
can select which parameters to vary on the command line to the fi command.

wt select how to weight data points
provides a quicker way to choose the method of weighting data than the fc com-
mand.

wt
or
wt i|s|u|n

The choices available for the wt command are explained under fc . If you don’t
choose the weighting mode on the command line, the current weighting mode is
printed, and you are prompted for a new mode.

Adding your model equation to the prototype
To use the fitting portion of the C-PLOT package, you have to do a bit of C pro-
gramming to enter the code for your fitting function. You don’t need to be an
expert programmer, since most of the programming work has been done for you.

In this section, the code from the prototype C module from which you start is
presented with explanations of what the code does.

Introduction

Your fitting function can be expressed as

y = f (b1, b2, ... bm; x1, x2, ...)

where the bi are the parameters to be fit and the xi are the independent vari-
ables. (Most often, users have only one independent variable.) The fitting algo-

102 Chapter 12

rithm requires derivatives of the fitting function with respect to each fitted
parameter. That is, values of

∂ y = f (b1, b2, ... bm; x1, x2, ...)

∂ bi

for each bi are needed. If you don’t supply the derivatives analytically, the pro-
gram will calculate them numerically. It is generally more efficient if you supply
the derivatives, since numerical evaluation requires an additional call of your
fitting equation for each derivative for each point. You can supply derivatives
for some of the parameters, though, and let the program calculate them for oth-
ers.

Initial definitions

These first lines are included at the beginning of all fitting C modules.
#define VERSION 5

#define NUM_XS 1 /* Independent variables */
#define MAXPAR 2 /* Parameters */
#define MAXPTS 1024 /* Most points for fitting */
#define MAXPLT 1024 /* Most for pg ps md mr sA */

#include <math.h>
#include <p_fitsize.h>

Lines that begin with a # are directives for the C preprocessor. In these
instances, either a manifest constant is defined or the contents of another source
file are to be included. VERSION indicates the version of the prototype file you
are using. Its value is used by other preprocessor directives in the included file
p_fitsize.h and should not be changed.

You select values for the next four definitions. NUM_XS selects the number of
independent variables you wish to use. Most often its value is one, but you may
have as many as you like. Define MAXPAR to be your total number of parameters.
Its value must agree with the number of elements in the structure initial
defined below. MAXPTS will be the maximum number of data points you can fit at
a time. MAXPLT limits the number of in-core points of the total (up to 65,636) you
can send to or receive from the plot program with the commands pg , ps , md , mr
and sA .

Fitting 103

Initial code

In the next lines of code you put in a title and a comment, and you have the
opportunity to enter some code that will get called once.

char *title = "Fit to a Line: y = c + m * x";
char *comment;
setup() {

/*
* Shown is optional user initialization
* of prompts. Second argument must point
* to static storage.
*/
set_prompt(0, "LINE"); /* Main prompt */
set_prompt(1, "line"); /* Command-file prompt */

}

The character-pointer variable title should be initialized to the address of a
string containing a short message that identifies the function. You can have
embedded newlines within the string. The title will be printed each time the fit
starts and will be displayed when you type the print version V command. The
character pointer comment may be set to point to a string that will be included in
the information printed with the sF command

The function setup() gets called shortly after the fit process starts. You can put
one-time initialization code within. For example, the default prompt FIT> can
be changed by the optional calls to the function set_prompt() . In this example
the primary prompt is set to LINE> and the secondary prompt to line> .

Initializing the parameters

The following structure is to be initialized with the parameters you will use in
your model equation. The example is for a two-parameter fit to a straight line.

struct init_4 initial[] = {
/* Name Deriv? Fit? Initial Limit? Low High */
{"Constant term", 1, 1, 0.1, 0, 0, 0},
{"Linear term", 1, 1, 0.9, 0, 0, 0},
};

The number of lines must agree with the number of parameters set by MAXPAR
above. The seven elements in each line of the structure are: 1) a character
string that identifies the parameter; 2) an integer flag that, if nonzero, indicates
your model supplies the analytic derivative of the fitting functions with respect
to the corresponding parameter; 3) an integer flag that indicates if this parame-
ter is to be fit initially; 4) the default initial value for this parameter; 5) an inte-
ger value indicating whether to constrain the limits — 1 for the lower limit, 2 for
the upper limit and 3 for both; 6) the value of the lower constraint; and 7) the
value of the upper constraint. The latter five can be easily changed while the
program is running.

104 Chapter 12

Not all parameters you give must be fitted or even used directly in the fitting
equation. For instance, a parameter might be put in only to be used for plotting
with the fitpar.4 user function (see Appendix C).

Referr ing to parameters

The internal storage of parameters and related values are in the structure array
named fpar , defined in p_fitsize.h. The next lines show how to refer to the
parameters in your model equation.

#define CONST fpar[0].p_b
#define fCONST fpar[0].p_fit
#define dCONST fpar[0].p_p

#define LINEAR fpar[1].p_b
#define fLINEAR fpar[1].p_fit
#define dLINEAR fpar[1].p_p

The purpose of the above definitions is to make referencing the current values of
the parameters convenient. The structure member fpar[i].p_b indicates the
current value of the i-th parameter. The other two members are relevant gener-
ally only when you are supplying the analytic derivatives for the corresponding
parameter. In such a case fpar[i].p_fit indicates the parameter is currently
being fit and fpar[i].p_p is the variable to which you assign the value of the
derivative. Their use is made clear below.

Referr ing to independent var iables

These next definitions show how to refer to the current value of the independent
variable(s) to be used in the current evaluation of the fitting equation.

#define X (M_flag? Make_x[0]:dp->d_xx[0])
#define X1 (M_flag? Make_x[0]:dp->d_xx[0])
#define X2 (M_flag? Make_x[1]:dp->d_xx[1])
#define X3 (M_flag? Make_x[2]:dp->d_xx[2])
/* etc. */

The integer variable M_flag is nonzero when evaluation of the fitting equation is
being performed on behalf of the make data command, md , or the make residuals
command, mr , and zero when the evaluation is being performed during fitting.
The C-language ternary operator (?:) within parentheses evaluates to the
expression on the left of the colon if M_flag is nonzero and the expression on the
right of the colon otherwise.

Notice that the definitions of X and X1 are the same. The latter is for the case of
multiple independent variables. You can of course change the defined names to
make your fitting equation more readable.

Fitting 105

The fitting equation

In the next part of the code you perform the actual evaluation of your fitting
equation. The simple example shown is for fitting to a straight line.

double model(deriv_flag)
int deriv_flag;
{

double x, yfit;

x = X;
yfit = CONST + LINEAR * x;
if (deriv_flag) {

if (fCONST)
dCONST = 1;

if (fLINEAR)
dLINEAR = x;

}
return(yfit);

}

The argument deriv_flag is nonzero when the routine model() must calculate
derivatives for the parameters currently being fit. Of course, the routine only
need calculate these derivatives if the structure initial indicates they are to be
user-provided. If the derivatives are to be user-provided and deriv_flag is set,
you still only calculate derivatives if the parameter is currently being fit. In this
example, that is the case when fCONST or fLINEAR are nonzero.

Although you could use the definition X for the current value of the independent
variable each time you refer to it, the code will be more efficient if it refers to X
just once. That is the purpose of the line x = X .

Adding your own commands

Within this C module you can add custom subroutines callable by two-letter
mnemonics you enter in response to the interactive prompt.

int prefilter(), postfilter();
struct user_cmds {

char c_one;
char two;
int (*c_func)();

} user_cmds[] = {
{’p’, ’o’, postfilter},
{’p’, ’r’, prefilter},
0,

};
prefilter() {
}
postfilter() {
}

Simply add the letters you intend to use and the name of the function in the

106 Chapter 12

initialization of the structure user_cmds . Also, declare your function name as a
function returning an integer as is done for postfilter() and prefilter()
above (although no return value is required). These two subroutines are simply
illustrative of the method and can be removed from your C-module or be
replaced by your own subroutines.

If the mnemonic you choose conflicts with any of the built-in fit program com-
mands, you will be informed when the program starts and your subroutines will
be inaccessible.

If you are interested in the entire line that the user has typed in response to the
interactive prompt, the function

char *get_cmdbuf()

returns a pointer to a buffer containing those characters. You may examine it or
parse its contents as you like.

Referr ing to data within your subroutines

In the file p_fitsize.h is the definition of the data structure:
struct f_data {

unsigned d_flags; /* Used internally */
float d_w2; /* The square of the weight */
double d_y; /* The dependent variable */
double d_ys; /* Used internally */
float d_xx[1]; /* Independent variable(s) */

};
extern struct f_data *f_data, *dp;
#define INC(d) (d = (struct f_data *) (((char *) d) + dpsize))

The pointer f_data is the base of an array of these structures. The pointer dp
contains the address of the array element associated with the current point
when fitting. The macro definition INC(d) illustrates how to increment a
pointer to an element in the f_data array by one element. Such machinations
are necessary since the size of an array element depends on the number of inde-
pendent variables configured.

Fitting 107

A fragment of code with which you might loop through all the data points fol-
lows:

register int i;
register struct f_data *d;

for (d = f_data, i = 0; i < npts; i++, INC(d)) {
if (d->d_flags&D_DONT_FIT)

continue;
d-d_xx[0] =
d-d_xx[1] =
d-d_xx[2] =
d-d_y =
d-d_w2 =

}

This example assumes three independent variables. Of course, the example still
requires the right-hand side of the assignment expressions. The externally
defined integer npts contains the current number of data points. The data flags
have the D_DONT_FIT bit set if the points are not in the current fit range.

Useful routines for interactive running

Several routines are available to provide easy interaction with the user of your
fitting function while maintaining compatibility with quiet mode (used with plot
filters) and with command files.

For printing to the screen, use the routine msg() rather than printf() . The
routine msg() suppresses output when quiet mode is in effect. Otherwise, its
behavior is identical to the standard printf() .

For reading input from the keyboard (or command file) the following four rou-
tines are available:

get_dnum(prompt, num) /* Input double from user */
char *prompt;
double *num;

get_inum(prompt, num) /* Input integer from user */
char *prompt;
int *num;

get_snum(prompt, num) /* Input string from user */
char *prompt, *num;

yesno(prompt) /* Check for positive response */
char *prompt;

In each of these routines, if prompt is nonzero, the string it points to is printed,
and in the first three routines, the current value of the double, integer or string
pointed to by num also is printed. In each case, a line of text is then read from
the keyboard (or command file) and scanned for something to stuff into the

108 Chapter 12

location pointed to by num . If no appropriate value is found on the line of text,
the contents of num remain unchanged.

The return values of the first three functions are: 1 if the user simply enters
<return> (num unchanged); 0 if the user entered something; and −1 if there was
an end-of-file (the command file finished or the user entered a ˆD). (Also, the
externally defined integer eofflag is nonzero on an end-of-file condition after
attempting input.)

The return values of the routine yesno() are: 1 if the input from the keyboard
(or command file) begins with y , Y or 1 ; 0 if nothing is entered; and −1 for any-
thing else. Examine the value eofflag to distinguish an end-of-file from a nega-
tive response.

Here is a sample code fragment showing how these routines might be used.
char file[128] = "good_data";
double norm = 1;

new_options() {
if (yesno("Change options (NO)") > 0) {

if (get_snum("New file name", file) == 0) {
/* open the file */

}
if (eofflag)

return;
if (get_dnum("Normalization", &norm) == 0)

return;
}
if (eofflag)

return;
/* and so on */

}

A typical dialogue produced by the above might look like:
Change options (NO)? y
New file name (good_data)? something_else
Normalization (1)? 876.1

Notice how the current values are given in parenthesis. If the user enters a ˆD
as a response to any of the prompts, the function will return to the calling rou-
tine.

Optimizing

In version 4 of the C-PLOT package, there is a second variation on the fitting
algorithm. This second variation is only relevant when you do not provide ana-
lytic derivatives for all the fitted parameters. For certain fitting functions you
may be able to make your calculations more efficient with this new variation (at
the expense of much more memory usage). Both variations produce the same fit
results.

Fitting 109

The differences relate to the order in which the model() function is called.
While doing the fit iterations in the original method, for each data point in turn,
the model() equation is called once with the current parameter set and then an
extra time for each parameter that did not have analytic derivatives provided.

The new method always calls model() for all the data points each time there is a
change of parameter values. During a fit iteration, model() will be called for
each data point in turn with the current parameter set. Then, for each fitted
parameter that does not have analytic derivatives provided, model() will be
called for each data point in turn with the varied value of the fitted parameter.
For users who need to do lengthy calculations that change for each parameter
set but are the same for each data point, this new method makes it possible to
speed the fitting process.

The only drawback to the new method is that it allocates additional memory
equal to MAXPTS * MAXPAR * sizeof(double) .

The default behavior is to use the old calling sequence. To use the new calling
sequence, add the line:

#define VECTORIZE 1

to your prototype before p_fitsize.h is included.

In order to take advantage of the new variation, you need to know at what point
in the fitting algorithm the model() function is being called. That information
can determined from the arguments to model() .

The model() function is called with four integer arguments:
model(deriv_flag, m_mode, par_num, point_num)

The argument deriv_flag has already been described. It is set if model() must
calculate the analytic derivatives during this call.

The argument m_mode is set to one of the constants defined in p_fitsize.h to indi-
cate from where in the code model() is being called. These constants are:

/* Called from ... */
#define FIT_VALUE 2 /* ... "fi" during fitting */
#define FIT_PARTIAL 3 /* ... "fi" to calculate partial */
#define FIT_SUMSQ 4 /* ... "fc" or "ch" */
#define CALC_DATA 5 /* ... "sa" */
#define MAKE_RESIDUALS 6 /* ... "mr" */
#define MAKE_DATA 7 /* ... "md" */

The argument par_num is normally −1. When model() is called with m_mode
equal to FIT_PARTIAL , the parameter described by fpar[par_num] has been
incremented (for calculating the partial derivative) from its value when model()
was last called with mode equal to FIT_VALUE .

110 Chapter 12

The argument point_num is the index into the f_data array. If the fit range
does not include all the data, point_num will not necessarily have a value of zero
at any time. Use code similar to the following to check for the first point:

model(deriv_flag, m_mode, par_num, point_num) {
static int prev_point = 32000; /* a large number */
int first;

if (point_num < prev_point)
first = 1; /* first in loop */

else
first = 0; /* not so */

prev_point = point_num;
...

}

Note that if you can’t provide analytic derivatives, you could still improve the
performance of the computations by calculating the partial derivatives yourself.
When deriv_flag is set, find the value of the fitting function at

y0 = f(a[j] = v)

and at
y1 = f(a[j] = v + del)

and set the parameter’s derivative to (y1 - y0) / del . By calculating the
derivatives for all the parameters within model() , you can avoid redundant
computations and speed up the fitting substantially.

Fitting 111

112 Chapter 12

Appendix A Setting up the Site

In this appendix you will find information on setting up site files and user files
for C-PLOT. It shows which shell variables are taken by C-PLOT from each user’s
environment and how C-PLOT uses them. There is an explanation of how to set
up the proper compiler options for C-PLOT’s user functions, and there are
instructions for setting up filters for your printers and display terminals. The
appendix also includes a list of the standard files that are part of the plot pack-
age and a description of the configuration files that are read by C-PLOT each
time it starts up. Also, the appendix explains how to optimize the terminal
capabilities database to make the most of C-PLOT’s PseudoGraphics feature.

Installing the software
The C-PLOT distribution is generally supplied on magnetic media in tar format.
The amount of disk space required for installation varies from computer to com-
puter, but is usually 1.5 to 2.5 megabytes. The directory hierarchy on the tar
media has the same structure as the final installation, so you need only choose
the place in your file system hierarchy to locate the C-PLOT files. C-PLOT expects
to find its auxiliary files either in the directory /usr/cplot or in the directory
/usr/local/cplot. You can locate the C-PLOT files somewhere else, however, and
make /usr/cplot (or /usr/local/cplot) a symbolic link to that location (if sym-
bolic links are available with your version of UNIX) or have each user set the
environment variable CPLOTHOME to that location.

Once you have decided where to put C-PLOT, make that directory, change to it if
necessary and then extract the contents of the tar tape or disk. The distribution
media usually has the tar command arguments you need for your system
printed on the label.

Setting up the Site 113

If extracting from a floppy disk, the disk will contain a compressed tar file of the
C-PLOT distribution. After extracting the file, named cplot.tar.Z, you need to
type the commands

zcat cplot.tar.Z | tar xvf -

You can then remove the cplot.tar.Z file. (If zcat is not available on your system,
contact Certified Scientific Software for assistance.) You need to make
/usr/cplot/bin (or $CPLOTHOME/bin) part of your path (or PATH) environment
variable so that UNIX shell programs can find C-PLOT. One way to do this is by
adding

set path=(/usr/cplot/bin $path)

to your .login file if you use /bin/csh or
PATH=/usr/cplot/bin:$PATH

to your .profile file if you use /bin/sh.

Standard files
The files and directories that make up the standard distribution are located in
$CPLOTHOME , as shown in the following list:

bin (C-PLOT executables)
cmdfiles (place for system command files)
cplot_config_
demos (demo command files)
filter_tools (filter-building modules)
filters (installed filters)
fonts (font data files)
functions (public user functions)
help (help files)
help_tools (tools for formatting help files)
include (header files for user functions)
overhead (modules to be linked with user functions)
prototypes (prototype user functions) All the above are directories, except for
the prototype site-initialization file, cplot_config_, described next.

114 Appendix A

The site initialization file
The distribution contains a file called cplot_config_. You should rename this file
cplot_config the first time you install C-PLOT. Each time C-PLOT starts it reads
in the values of a number of variables from the file cplot_config. You may wish
to customize these parameters for your installation.

Name Default Explanation

BAUD 2400 Baud rate of pen plotter; can be argu-
ment to in command

CFLAGS -O Compiler flags for user functions1

CLIBS -lm -ltermlib Libraries to be linked with user
functions1

DEVICE /dev/plotter Default device for pen plotter; can be
argument to in command

FILTER x11 Initial graphics filter; can be argument
to zi command1

FILTER1 x11 Same as FILTER1

FILTER2 testfilter Initial second graphics filter1

GPIB 0 Nonzero if plotter is on GPIB interface
NPTS 8,192 Maximum number of in-core points2

1Defaults vary depending on the platform.
2Additional data points (up to 65,635) are retained in temporary files. (An unlimited numbers of
points may be plotted.)

Edit the file by hand if you want to make changes. Values in a .cplot_init file in
a user home directory take precedence over values in the cplot_config file. Not
all the variables need be set in each file. The value used for a variable is the one
obtained from the last file read.

Setting up the Site 115

Wha t plot gets from the environment

Several shell variables are normally set when you log on to the computer —
some automatically by the login process, others from the contents of your .profile
files if you are using the Bourne shell, /bin/sh, or your .login file if you are
using /bin/csh.

C-PLOT looks at the following environment variables:

Variable Default Description

CPLOT_DO_DIR $CPLOTHOME/cmdfiles Alternate command file directory1

CPLOT_FN_DIR $HOME/functions User ’s function directory
CPLOT_GD_DIR . Alternate data directory1

CPLOTHOME /usr/cplot Location of C-PLOT auxiliary files
EDITOR vi user function editor
HOME . User ’s home directory
SHELL /bin/sh Program to spawn with u command
TERM vt100 Terminal name or type
TMPDIR /tmp Directory for temporary files

1The value may be a colon-separated list of directories.

The last four names are standard variables used by many programs. The first
four are particular to this package. To set an environment variable in a .profile
file appropriate for /bin/sh, you would put lines in the file similar to:

CPLOT_DO_DIR=/usr/joe/cmdfile
export CPLOT_DO_DIR

For a .login file appropriate for /bin/csh, would put a line similar to:
setenv CPLOT_DO_DIR /usr/joe/cmdfiles

When you create subshells from C-PLOT, the variable CPLOTLOCK is added to the
environment. Any time an instance of C-PLOT starts up, it prints a warning
message if CPLOTLOCK is present in the environment, to help you avoid inadver-
tently running nested versions of C-PLOT.

Help files
There are a number of files in the help directory. The contents of the files called
news and motd are printed each time C-PLOT starts. The file news is included in
the distribution and will be overwritten when C-PLOT is updated. You also can
write your own help files. Any text file in the help directory is accessible
through C-PLOT’s help facility. The help file help_fmt includes instructions for
setting up help files so they will be formatted for your screen or window size and
will print properly. The formatting syntax is based on the nroff/troff utilities;

116 Appendix A

nroff/troff macros and a Makefile are included in the help_tools directory to
assist in producing hard copies of the files. See the comments in the Makefile
and head.man files, in the help_tools directory, for more information on printing.

Installing graphics filters
A number of precompiled graphics filters are included in the filters subdirectory.
For those that produce output for a printer, you should create a spoolers file as
described in the file filter_tools/spoolers. You also may wish to compile addi-
tional filters from the files in the filter_tools directory. Consult the README file
in the filter_tools directory for more information. Compiled filters should be
moved or copied to the filters directory.

Optimizing terminal capa bilities for PseudoGra phics
Most installations of UNIX operating systems include a facility for describing the
capabilities and special character sequences of terminals in a uniform way. On
some versions of the operating system, the file /etc/termcap contains the capa-
bilities. On other systems, files in the directory /usr/lib/terminfo are used.
The following termcap/terminfo capabilities are used for PseudoGraphics, where
the two-letter code is the conventional name of the capability.

Code Description

as Start alternate character set
ae End alternate character set
cl Clear screen and home cursor
ho Home cursor
cm Cursor motion
up Cursor up
md Begin bold mode
so Begin stand-out mode
se End stand-out mode
ti Initialize terminal
te Reset terminal
li Lines
co Columns

Values for the number of lines and columns on the tty screen are taken from the
environment variables LINES and COLUMNS , rather than the termcap or terminfo
databases, if available. If these values aren’t present, the defaults of 24 lines
and 80 columns are used. If the TIOCGWINSZ ioctl() mode is present on window-
ing systems, that command is used to obtain the window size.

Setting up the Site 117

Stand-out mode is used in the C-PLOT package when highlighting data points in
the video-display version of the command gd 7 (see Chapter 3), as well in high-
lighting text displayed with the help command.

The capabilities as and ae are often missing from standard data bases. Their
function is to start and end translation to the terminal’s alternate character set.
The PseudoGraphics features use characters from the alternate character set, if
available, to outline the axis, show the tick marks and plot the points. The
codes for the alternate characters themselves are not generally part of the ter-
minal capabilities databases. Thus, the codes for these characters are built into
the plot program, but only for a selected number of terminals.

There are five alternate character sets built into the program. One of these
character sets is automatically chosen when the plot program starts up based on
the value of the TERM variable. The recognized names are shown in the following
table. The first entry is used when TERM doesn’t match any of the other names.

Special Character s TERM names Other name

none dumb plot0
VT100 vt100 vt52 v132 xterm plot1
Zenith h19 Z19 z29 Z29 plot4
IBM PC ibmpc pc PC plot5
Televideo tvi950 plot6

If one of the built-in character sets might be appropriate for your terminal but
the TERM name you use isn’t built into the program, you can use the gr command
to select the appropriate name from the last column of the table. If the plot pro-
gram can’t find the name you give with the gr command in the terminal-capabil-
ity database, it will switch to the alternate characters associated with that name
but will continue to use the control sequences it had been using.

118 Appendix A

Compiling user functions
C-PLOT automatically invokes the makefunc script in $CPLOTHOME/bin to create
executable files from the user’s code. By default the makefunc script will invoke
the C compiler. The flags that should be passed to the compiler and the libraries
that need to be loaded with the code vary from operating system to operating
system. The flags and libraries are taken from the cplot_config initialization
file.

Normally, the flags supplied with your distribution of the software are appropri-
ate for your site. You may want to make some changes, however. For instance,
you may want to have the name list stripped from user function executables to
conserve disk space. On the other hand, you may want to keep the name list so
you can run a debugger on your functions.

Sample user functions and demos
Each distribution comes with an assortment of user functions in the public func-
tion directory. Some of these are of general utility and some are provided as
entertainment or examples of how to write user functions. Descriptions of many
of these user functions are given in Appendix C.

When you have finished installing C-PLOT, you may want to try running some of
the demonstration files included with the distribution. Change to the demos
directory and examine the README file for instructions. Copies of the demo
files are in Appendix D.

Setting up the Site 119

120 Appendix A

Appendix B Plot Fonts
About the fonts

This appendix contains samples of the different fonts available for drawing text
on the pen plotter and the graphics filter devices.1

The character sequences used to access the Greek, technical and other special
characters are described in the last section of Chapter 6. All fonts contain all 94
printable ASCII characters. As of this writing, only fonts 0 and 2 contain all the
special characters.

The samples presented here were drawn using the PostScript graphics filter (psfil-
ter) on an Apple LaserWriter. The character size was set to 4mm using the cs com-
mand (see Chapter 6).

Font 0
Font 0 is the default font and is built into the program. The characters are
drawn on a 6×8 grid.

1Fonts 1 through 8 consist partly of characters from the Hershey Fonts originally created by
Dr. A.V. Hershey while wor king at the U.S. National Bureau of Standards.

Plot Fonts 121

Font 1
Font 1 is a medium-resolution font with characters drawn on a 13×13 grid. The
thick strokes consist of two lines.

Font 2
Font 2 is a high-resolution font drawn on a 21×21 grid. The characters are
drawn with strokes one line thick.

122 Appendix B

Font 3
Font 3 is a high-resolution font drawn on a 21×21 grid. The thick strokes consist
of two lines.

Font 4
Font 4 is a high-resolution font drawn on a 21×21 grid. It is the fanciest of the
Roman fonts, with thick strokes consisting of three lines. In addition, many
short strokes are used to contour the serifs.

Plot Fonts 123

Font 5
Font 5 is a high-resolution, double-line stroke, sans serif font drawn on a 21×21
grid.

Font 6
Font 6 is a high-resolution, triple-line stroke, Gothic font drawn on a 21×21 grid.

124 Appendix B

Font 7
Font 7 is a high-resolution, single-line, script font drawn on a 21×21 grid.

Font 8
Font 8 is a high-resolution, double-line, script font drawn on a 21×21 grid.

Plot Fonts 125

126 Appendix B

Appendix C Standard User Functions

This appendix contains descriptions of the standard user functions supplied
with C-PLOT. The functions and source code (if provided) reside in the public
function directory $CPLOTHOME/functions.

User functions covered

Name Description Purpose Source

calc.4 Data calculator Utility No
chaos.1 Generates data that bifurcates Fun Yes

contour.4 Generates contour plots Utility Yes
curves.2 Generates geometric curves Fun Yes

fft.4 Does fast Fourier transforms Utility Yes
fitpar.4 Plots fit parameter files Utility Yes
hairs.4 Positions cursor over points Utility No

hist.4 Histograms frequency of data Utility Yes
psych.4 Generates psychedelic curves Fun Yes
scans.4 Reads scan data from files Utility Yes
shell.4 Runs any program to filter data Utility Yes

smooth.4 Smooths using boxcar average Utility Yes
sort.4 Sorts data Utility Yes

spline.4 Interpolates using cubic spline Utility Yes

calc.4
Calc.4 is a general-purpose user function for manipulating your current data or
creating new data.

fn calc.4
fn calc.4 expression [; expression ...]
or
fn . .

Calc.4 uses a grammar consisting of vector names (x, y etc.), variable names
(upper-case letters), arithmetic operators (+, −, =, etc.), and function names
(sin() , sqrt() , log() , etc.). The arithmetic expressions you enter are per-
formed for each point in the current data. For instance, if you enter an expres-
sion such as y = 2 * x , the value of each y in your data set will be replaced
with twice the value of the corresponding x. Syntax rules and examples follow.

Standard User Functions 127

Lower-case letters

The letters n and i have special meaning. By assigning to n you can set the
number of points. When i is used on the right side of an equation, its value is
the index number of the data point. (Index numbers start at 0.)

Valid vector names are x , y , z , r , s , t , t0 , t1 and t2 . Both r and z refer to the
same data vector, representing x error bars in 2D mode and z data in 3D mode.
The vector t refers to a data vector internal to calc.4 that can be used to hold
intermediate results. This data vector retains its values through subsequent
calls to calc.4. The vector t0 refers to the same storage as t , while t1 and t2
are additional temporary vectors.

You can assign values to vectors by placing them on the left side of an equals
sign. You can use their current value by placing them on the right side of the
equals sign.

Upper-case letters

The upper-case letters A to Z represent single-valued variables. They retain
their values on subsequent calls to calc.4. Variables can appear on either side of
an equation. For instance, you may have:

fn calc.4 A = 1.4; B = 4.4e-2; C = 3.22e-4
fn . y = A*x + B*x*x + C*x*x*x

or
fn calc.4 n = 101; W = i*pi/50; x = cos(W); y = sin(W)

Assignment to variables only occurs if the number of current points is nonzero.
If you have no current points, you may use n = 1 to force evaluation of your
expressions.

Opera tors

The arithmetic operators are, in order of precedence:

parentheses for grouping : ()

unary plus and minus : + −

exponentiation : ˆ

multiply, divide, modulus : * / %

addition and subtraction : + −

assignment : =

assignment with operator : += −= *= /= %= ˆ=

As in the C language, the operation x += 1 means x = x + 1.

128 Appendix C

Functions

The following math functions are available:

exp(), exp10() : powers of e and of 10
log(), log10() : logarithms base e and base 10
abs() or fabs() : absolute value

sqrt() : square root
sin(), cos(), tan() : sine, cosine, tangent

asin(), acos(), atan() : inverse sine, cosine, tangent
sinh(), cosh(), tanh() : hyperbolic sine, cosine, tangent

rad() : degrees to radians
deg() : radians to degrees

j0(), j1() : Bessel functions of first kind
y0(), y1() : Bessel functions of second kind

erf() : error function
erfc() : 1 − erf()
int() : returns integer part of argument
rand() : returns random number be-

tween 0 and the argument
step() : returns 0 if arg < 0, 1 otherwise

All trigonometric functions use radians. The C-library rand() routine supplies
the random numbers — thus the numbers returned cannot be relied on for
meaningful statistical analysis.

Other things

The name pi is special. It represents the constant 3.14159....

Only one line of input is allowed, but you can have multiple expressions on that
line separated by semicolons. When you have multiple expressions, the whole
group is evaluated for the first data point (i = 0), then for the next data point (i =
1) and so on. If you have no points, the expressions won’t be evaluated.

An expression preceded by the word once will only be evaluated for the first
point (i = 0).

You can enter the expressions on the command line from C-PLOT or when
prompted. If you enter just a dot as the expression, as in fn . . , the same
input line is used as the last time.

Spaces aren’t significant in the expressions.

Standard User Functions 129

Error handling

Syntax errors from bad grammar are noted with the offending character indi-
cated. On the following error conditions — dividing by zero, taking the square
root of a negative number, taking the logarithm of 0 or a negative number, rais-
ing 0 to a non-positive exponent and raising a negative number to a non-integral
exponent — an error message is printed showing the index number of the cur-
rent point. The offending operation is not performed and calculations continue.
Other error messages may be produced by the math library routines if they have
problems with your numbers.

Examples

Create a circle of 101 points, radius 3.
fn calc.4 n = 101; x = 3 * cos(pi*i/50); y = 3 * sin(pi*i/50)

Invert x, set error bars to the square root of y.
fn . x ˆ= −1; s = y ˆ .5

or
fn . x = 1 / x ; s = sqrt(y)

Create a cosine curve of 201 points with x running from −10 to 10 radians.
fn . n = 201; y = cos(x = −10 + 20 * i / 200)

Increment the variable A, and increment each y by 0.2 times A.
fn . once A += 1; y += A * 0.2

Note the once means A gets incremented once. You can now enter fn . to
increase the y values by another step, perhaps repeating this operation to plot a
series of curves offset by constant increments.

chaos .1
Chaos.1 is a simple user function that implements the recursive relation
yn+1 = x yn (1 − yn).

fn chaos.1

You choose the range for x and enter a value for y0.

Of course, x0 had better be non-zero. Appropriate values are y0 = 0.5 and 0<x<4.
You should draw the resulting data with symbol 9 (a dot).

130 Appendix C

contour.4
The contour.4 user function generates contour plots.
fn contour.4 [options]

Valid options are:

. : use same options as last time
+g or −g : data are (or aren’t) a perfect grid
+n or −n : data are (or aren’t) a near grid
+s or −s : data are (or aren’t) properly sorted
+r or −r : reuse (or don’t) previous data
+v or −v : show (or don’t) function progress

: number of contour intervals (default 10)
zmin=# : z value of first contour
zmax=# : z value of last contour
xcol=# : number of columns of data
xmin=# : use this value to window x data
xmax=# : use this value to window x data
ymin=# : use this value to window y data
ymax=# : use this value to window y data

The default options are: +gsv −r 10 .

The default minimum and maximum of x, y and z are the data minimum and
maximum. In the default case, the number of columns of data is estimated auto-
matically. In 2D mode the z values are taken from the x-error-bar column. The
numbers returned can be plotted in 2D or 3D mode.

By indicating the data are a “perfect” or “near” grid and/or “properly” sorted, you
can save time otherwise used in unnecessary preprocessing of the data.

A perfect grid means that if there are N columns and M rows, the total number
of points is N times M. In addition, the x and y values each need to be equally
spaced. In the current version of contour.4, a different algorithm is used for data
in a perfect grid than for the other case. The perfect-grid algorithm returns
smoother contours than does the alternate algorithm. Also, the data points for
each contour are in consecutive order, so that they may be plotted with pat-
terned lines. With the alternate algorithm, the data points are returned as line
segments that form columns on the page.

A near grid requires the x data to be in columns, although not all columns must
have the same number of points.

Standard User Functions 131

Properly sorted data means the data are sorted by increasing values of x. Data
with the same x values are sorted by increasing values of y. If x values within a
given column of data are not identical, data points within that column must be
sorted by y, with the sort by y taking priority over the sort by x.

If the data are a grid, the function determines the number of columns from the
number of points in the first column, which ends when the y values first turn
over. If the data are not a grid but are sorted, or if the data are a “near” grid,
the function counts the number of columns by counting the number of times the
y values turn over.

If the data are not a grid and are not presorted, and if you don’t specify the num-
ber of columns of data, the function estimates that number using the following
rules:

After the function sorts the data by x, it counts the number of times the y values
turn over. If this number is less than the maximum number of columns (1024)
and less than one-third the number of points, that value is used. Otherwise, the
number of columns is simply set to the square root of the number of points
rounded to the nearest integer.

The contour.4 function will produce an approximation of a contour plot even if
the input data are randomly scattered over the x-y plane.

In 3D mode, contour.4 returns new x, y and z values. In 2D mode, the contour
(or z values) are returned in the x-error bar column. One could use various UNIX
utilities to extract data points along the same contour, place them into separate
files, read them back and plot them with unique symbols or pen colors.

Reusing the previous data can save time if you are interested in generating dif-
ferent contour ranges or intervals with the same data set. Only changes to the
contour minimum, maximum or number of contour intervals have any effect
with the reuse option.

Entering a negative number for the number of contour intervals selects logarith-
mic contour spacing. The minimum and maximum contour values selected
must, of course, be positive numbers.

132 Appendix C

cur ves .2
Curves.2 is a user function that generates a number of geometric curves.

fn curves.2
or
fn curves.2 [range], # [parameters ...]

When invoked without arguments, you are presented with a list of names of
curves. Select one of the curves and then select values for its parameters.

Since this is a type 2 function, both x and y are functions of a parametric vari-
able. Most of the curves in curves.2 are expressed in polar form, with the radius
r given as a function of polar angle z, and it is z (in degrees) that is treated as
the parametric variable. A range from 0 to 360 is appropriate for most of the
sample curves. (For the spirals, of course, you may want to go around many
more times.)

You can give the index number of the curve # and, optionally, new parameters,
on the command line from C-PLOT. You must precede these parameters with a
comma to separate them from the position held by the range for the parametric
variable (see fn). If you only enter a new index number, the previous parame-
ters will be used.

Standard User Functions 133

fft.4
Fft.4 does a fast Fourier transform of the current data.

fn fft.4
fn fft.4 options
or
fn . .

With no arguments, you are prompted for the type of transform and type of data
in which you are interested. If you are supplying complex input data or asking
for complex output data, the real part is stored in the x data column and the
imaginary part is stored in the s (error-bar) data column. You also can supply
options on the command line. Valid options are:

. : use same options as last time
+f or −f : forward (or reverse) transform
+r or −r : real (or complex) input data
+o or −o : real (or complex) output
+a or −a : take absolute value (or don’t)
+s or −s : take absolute value squared (or don’t)
+m or −m : sort and merge the data (or don’t)
+i or −i : interpolate input data (or don’t)

n=# : set number of points
f=# : set from value for interpolation
t=# : set to value for interpolation

The default options are:
+fro −asmi n=npts f=first_x t=last_x

Here npts , first_x and last_x refer to the number of points and the range of
the current data. Interpolation, if used, is by a cubic spline. (See spline.4).
Naturally, points in x must be equally spaced for the transform to make sense.

Transforming more points than the number of in-core points, as set in the
$CPLOTHOME/cplot_config or $HOME/.cplot_init file is extremely slow because of
the large number of file accesses required.

When entering options interactively, it is possible to turn on a verbose mode that
will show the status of the transform as it works through the data.

134 Appendix C

fitpar.4
Fitpar.4 makes it easy to plot from a catenated group of save-parameter files cre-
ated with a type 5 fitting user function. Any of the parameters or the chi-
squared value may be plotted against any other. In addition, axis labels may be
taken from the parameter names.
fn fitpar.4
fn fitpar.4 filename x_index y_index [label_flag]
or
fn . . x_index y_index [label_flag]

Use the sp , sP or sf commands in the fits to save parameter sets to a file. For
fitpar.4 the parameter sets need to be gathered consecutively in a single file.
You can accomplish this from the fit by saving parameters with the append
option, or from the shell by combining files with the UNIX cat utility.

When invoked without arguments, fitpar.4 will ask for the name of the parame-
ter file, let you view a list of the parameter names, prompt you for the parame-
ter index numbers to use for x and y, and ask if you want to have the axis labels
taken from the parameter names. If the parameters were saved with errors,
those values will be put in the error-bar vector. You can assign the value of chi-
squared to x or y by entering −1 as the parameter number.

You can pass both the parameter file name and parameter numbers to the func-
tion on the command line from plot. A single dot in place of the file name means
to use the same file as before.

For example,
fn fitpar.4 params 0 4

will initialize the function with file params and return parameter 0 in x and
parameter 4 in y. A subsequent call

fn . . 0 3

will return parameter 0 as x and parameter 3 as y.

You might find it useful to include in your fit functions parameters that aren’t
used in the fitting but can be used in this function as one of the axes.

The optional fourth command-line argument turns on and off the feature that
assigns axis labels from parameter names. A zero turns the feature off, a non-
zero number turns it on.

Standard User Functions 135

hair s .4
Hairs.4 lets the user position a cursor over the high-resolution display of a plot
and read off the cursor position in a variety of units.
fn hairs.4

When you use hairs.4 to position cross hairs over each current point on a screen
plot, the coordinates of each point will be read off in data units or the position of
the cross hairs will be displayed in window or annotation units. The hairs.4
function is only available on PCs using VGA, EGA or Hercules display adapters in
native mode.

The following commands are available in hairs.4:

Command What it does

c step through available cursors
C step through available colors
d toggle among user, window, annotate coordinates
f toggle between fonts
m toggle between scan and roam motion modes

q, ˆD, ˆC quit
<return>

The keyboard moves the cursor according to the following diagram:
Motion Keys Multipliers

(h j k l y u b n)
Roam Scan

\ / alt: 20 5
y u | shift: 50 10

<--h j k l--> control: 100 50
b n |
/ \

Using the alt, shift or control keys with one of the motion keys multiplies the
motion as indicated in the table above.

In scan mode, the cursor stays on the current data points. In roam mode, the
cursor can be moved anywhere on the display.

User units display the cursor position in the units of the current data points.
Window units display the cursor position in terms of C-PLOT centimeters, mea-
sured from the lower-left corner of the display, and are the appropriate numbers
to enter for the wi command. Annotation units display the cursor position in
terms of C-PLOT centimeters measured from the upper-left corner of the plot axis
window and are the appropriate numbers to enter for the zn , pn , zk and pk com-
mands.

136 Appendix C

hist.4
Hist.4 is simple user function that takes your data and generates new points to
draw a histogram.
fn hist.4
or
fn hist.4 bins [min max]

The histogram will be a plot of the frequency of occurrence of the x values within
equally spaced intervals (or bins). You can choose the starting value of the first
bin, the end value of the last bin and the number of bins.

The function first sorts your data by the x values. You are then presented with
the minimum and maximum. You may select different values — usually you
will want values rounded to an integer.

By default, the program selects the number of bins to be the difference between
the minimum and maximum rounded to an integer (or the difference times
increasing powers of 10, until the result is greater than 0). You can use that
value or enter another.

You can enter just the number of bins on the command line, in which case the
data minimum and maximum values will be used, or you can enter the number
of bins and the minimum and maximum values on the command line.

When the function returns, draw the current points with a solid line (symbol L)
to obtain the histogram. Of course, in the process of generating the histogram
your data points are lost from memory.

psych.4
Psych.4 generates a random psychedelic pattern.
fn psych.4
fn psych.4 arg
fn psych.4 par1 par2
or
fn . [arg or par1 par2]

The patterns psych.4 generates are determined by two numbers. You can select
the numbers or you can let the computer select random values. If you invoke
psych.4 with no arguments, you will be asked if you want it to use random num-
bers. Whenever you give two numerical arguments, those values are used to
create the pattern. A single numerical argument arg makes the function use
random numbers for subsequent invocations.

When the program is selecting random numbers, values for par1 are between 0
and 10, and values for par2 are between 0 and 20.

Standard User Functions 137

scans .4
reads data from ASCII scan files.
fn scans.4 [options] [scan_numbers]

The scans.4 function reads in files of ASCII data according to a modest set of con-
ventions.

When used with X-ray scattering data, scans.4 can perform scan averaging,
background subtraction, data-normalization and error-bar calculation. How-
ever, scans.4 works well with any kind of data file that follows the conventions
described below.

Command line options

. use same options as last time
-i initialize, used to start up function and return

-f file select scan-file name
-p print scan-file contents

+d or −d collect (or don’t) 3 columns of data
+e or −e calculate (or don’t) error bars from statistics
+M or −M use (or don’t) special MCA data convention
+n or −n normalize (or don’t) data points
+o or −o sort (or don’t) data points
+q or −q don’t (or do) print messages (quiet)
+r or −r rerange (or don’t) plot axes for each new data set
+s or −s sort and merge (or don’t) data by x values
+v or −v print (or don’t) each line of scan file (verbose)
+I or −I use (or don’t) #I intensity normalization
+S or −S retrieve scans by scan (or file) number

x=# set column for x values
y=# set column for y values
z=# set column for z values, turn on +d flag
m=# set column for monitor normalization, turn on +n flag
t=# set column for time normalization, turn on +n flag
x=M stuff MCA channel numbers in x in 3D mode
y=M stuff MCA channel numbers in y in 3D mode

The default settings correspond to the following options in 2D mode
−f data +eosSn −drvIqM x=1 y=−1 m=−2

and
−f data +deosSn −rvIqM x=1 y=2 z=−1 m=−2

in 3D C-PLOT mode.

138 Appendix C

Specifying scans

Scans can be retrieved by entering either the scan number (option +S , the
default) or the file position number (option −S).

Scan numbers are determined by the #S lines in the file (see below). The file
position number is the sequence position of the scan in the file, irrespective of
scan number.

When selecting by scan numbers, if there is more than one scan with the same
number, the last of them is retrieved. You can specify which instance of a
repeated scan number to retrieve by appending a decimal point and an index
number to the scan number. For example, selecting scan number 10.3 retrieves
the third scan from the start of the file that has scan number 10.

Negative numbers count back from the end of the file and are always considered
to be file-position numbers. For example,

fn . −1

will always return the last scan in the file.

You can enter multiple scan numbers to select the scans you are interested in.
Scan numbers that end with b are used as background scans. For example,

fn . 12b 13 14b 15b 16 17b

Data in the background scans will be subtracted from the data in the non-back-
ground scans that has corresponding x values. Choosing a background scan will
force the data to be sorted by x values.

You can read in a group of consecutive scans with
fn . 3−7 10−14

This command would read in scans 3 through 7 and 10 through 14.

File conventions

The scan files contain control lines, data lines and blank lines. Control lines
contain a # character in the first column followed by a command word. Data
lines generally contain a row of numbers. Special data lines containing MCA
data begin with an @ character followed by a row of numbers. These data lines
are ignored unless the use MCA data option 0.> is selected.

The control conventions used by scans.4 are as follows:
#S N — starts a new scan. Here, N is the user’s numbering scheme and is the

number used when retrieving by scan number (+S). Most often the scan
number is the position of the scan in the file.

#M N — indicates data was taken counting to N monitor counts.

Standard User Functions 139

#T N — indicates data was taken counting for N seconds.
#N N [M] — indicates there are N columns of data. If M is present, it indicates

there are M sets of data columns on each line. When collecting data from a
multi-channel analyzer, for example, the data might be arranged with 16
points per line in the file to make the file easier to scan by eye. In such a
case, the control line would be #N 1 16 .

#I N — is for an optional multiplicative intensity-normalization factor.
#@MCA — indicates the scan contains MCA data. If the +M option is selected, x

(2D or 3D) or y (3D only) values will be calculated automatically. In three-col-
umn mode, whether it is x or y depends on whether the x=M or y=M command
line option is selected or on which interactive response was given. Data in
the lines starting with @A will be stuffed into the y (2D) or z (3D) data array.

#@CALIB a b c — gives calibration factors for MCA data. The x (2D or 3D) or y
(3D only) values will be calculated using the formula

xi = a + b ∗ i + c ∗ i ∗ i

where i is the point number, starting from zero. Calibration factors can be
changed within the data portion of a scan for subsequent MCA data by the
line

@CALIB a b c

Before each scan is read by scans.4, the calibration parameters are initialized
to zero.

The following control lines are not commands but are printed out as they are
encountered while reading a scan:
#C — is a comment line.
#D — is followed by the date and time the scan was taken.
#L label1 label2 ... — is the data-column labels, with each label separated

from the next by two spaces.

For example, a very simple file might have:
#S 1
#N 3
#L Temperature Voltage Counts
23.4 1.01 30456
23.6 1.015 24000

#S 2 etc.

140 Appendix C

Da ta columns

When running C-PLOT in 2D mode, the default behavior is to take x values from
the first column and y values from the last column. If in 3D mode, x values are
taken from the first column, y values from the second and z values from the last
column. If normalizing the data, the default behavior is to use the #T or #M val-
ues. If neither appear, you must enter a column number for the normalization
values.

When entering column numbers, a negative number counts backward from the
last column. If the column for x is zero, the value put in for x is just the index
number of the point.

Enter ing options

If you give a dot . as the command-line argument or in response to
Scans/options , the same argument or option string will be used as last time.
That is, the string is remembered, not the options chosen interactively using
Change modes? For instance, if you enter a long sequence of scan numbers and
read in the scans, then change something via Change modes? , you can simply
enter a dot in response to Scans/options and recover the previous sequence of
scan numbers.

When you do enter a string of flags and scan numbers, the modes set by the
flags only apply to the scans that follow the flags, not tp the preceding scans.

The index file

Reading a long ASCII data file takes time. When scans.4 first opens a file, it
scans the whole file and saves a directory of the scans in a binary-format index
file. The name of the index file is formed by appending .I to the original data-
file name.

As long as the index file is more recent than the data file, scans.4 will use the
information in the index file.

Nor malization and error bars

Data can be normalized to either monitor counts or time. When normalizing to
monitor counts, the error bars will include the uncertainty in the counting
statistics of the monitor counts. Otherwise, there is no difference between speci-
fying time or monitor counts.

By default, scans.4 normalizes data to monitor counts, with the second to last
data column used for the monitor count values. Use the 0.> flag to turn off nor-
malization. If a column number is selected using the m=col or t=col argu-
ments, normalization is set to monitor or time mode, respectively, using the col-
umn number specified. If the column number in either case is given as zero, the

Standard User Functions 141

normalization mode and value given by the #M or #T directives for a particular
scan in the data file are used. It is an error for normalization mode to be on, for
the normalization column to be set to zero and for no normalization directives to
be present for a scan.

The normalization modes selected remain in effect for subsequent scans.

The values returned as error bars are those due to counting statistics (the
square root of the number of counts). When the counts are derived from the
algebraic combination of detector, background and monitor counts, the error
bars are calculated using the appropriate “propagation of errors” formalism. See
the source code for details.

If the +I option is selected, the counts for each point are multiplied by the value
given by the #I control line in the scan header. If the +I option is selected, the
counts for each point are multiplied by the value given by the #I control line in
the scan header. If the +I option is selected and the scan header doesn’t contain
a #I control line, the counts are not changed.

Number of points

Earlier version of scans.4.c had built-in limits to the number of scans or raw
data points that could be handled. Those limits no longer exist.

shell.4
Shell.4 uses the Bourne shell (/bin/sh) to run a command that takes the cur-
rent data as input and produces new data from its output.
fn shell.4
fn shell.4 command
or
fn . .

With no arguments, you are prompted for a command. Otherwise the command
is taken from the command line. If the command is a single dot, the same com-
mand as last time is used.

Input

The current points are sent to the subprocess with the x and y values on one
line, with one line per data point. If error-bar and/or line-control modes are on,
the corresponding values also are included on the line. If there are no current
points, a single newline is written to the command subprocess.

If the subprocess is not interested in the current data, you can save time and
system resources by erasing the current data using the gd 15 command.

142 Appendix C

Output

The output of the subprocess is scanned for x and y values with the new number
of points determined by the number of lines of data that are read. If error-bar
and/or line-control modes are in effect, corresponding values also are scanned
for. It is not considered an error for either of these values to be missing, but
those values that are missing from the input are set to 0.

Any line read from the subprocess that doesn’t contain valid data is printed on
the screen.

Execution

The Bourne shell (/bin/sh) is used to invoke the command. Each time shell.4 is
invoked, the previous instance of the command is killed. All signals for the sub-
process running the command are restored to their default values, with the
result that a ˆ\Z (or your system’s quit-signal character) will likely cause the
subprocess to do a core dump.

Examples

Use awk to multiply the y values by 3:
fn shell.4 awk ’{print $1, 3 * $2}’

Use sort to rearrange the data,
fn shell.4 sort −n

This usage sorts the data by x values. (Beware, sort doesn’t recognize scientific
notation.) Use cat to extract data from an ASCII file,

fn shell.4 cat data

This usage ignores the current data points.

smooth.4
is a simple boxcar data smoother.
fn smooth.4 [bin_size]

The function smooth.4 uses a simple smoothing algorithm that averages some
number of adjacent points (given by bin_size) to produce a new point. The
bin_size parameter is rounded up to an odd number.

The input data should be presorted. The number of points used in the average
decreases at the end points.

Standard User Functions 143

sor t.4
Sort.4 sorts the current data by x, y or s, the error-bar column (which doesn’t
have to contain error-bar values). Data can be sorted by increasing (forward)
values or decreasing (reverse) values.
fn sort.4
or
fn sort.4 [x|y|z|s] [f|r]

With no command-line options, you are prompted for the data column to sort by,
and whether to sort in the forward or reverse sense.

The command-line arguments can be entered together as one word, or sepa-
rately. Only the last valid command letters are considered. The default each
time is to sort in the forward sense by x.

spline.4
Spline.4 creates data points at evenly spaced intervals using a cubic spline algo-
rithm to interpolate new points from the old. The interpolated points lie on a
cubic polynomial between each pair of original points, and each polynomial sec-
tion is joined continuously to the next with continuous first and second deriva-
tives.
fn spline.4
fn spline.4 [+s|−s] [[n=]npts] [f=from] [t=to]
or
fn . .

The default from and to values are the first and last values of x in the original
data. If you don’t enter arguments, you will be prompted for the number of
points and the range to interpolate over.

The +s and −s options turn the automatic sorting and merging of data on and
off. Data must be in increasing order, by x, for the spline to succeed. Also, x val-
ues must be distinct. Turning the sort off saves time for splining presorted data.
The default is no sort.

Spline.4 turns off error-bar mode and error-bar values are ignored in the sort-
ing.

144 Appendix C

Appendix D Demo Files

The C-PLOT distribution includes several standard demonstration files showing
the program’s capabilities. This section includes samples of the graphics they
produce, along with the contents of the command files used to make the graph-
ics. Users may find it helpful to review these files as an aid to understanding
the operation of C-PLOT’s command file facility.

The sample plots here were made using C-PLOT’s PostScript filter.

Each of these command files uses graphics filter z commands to draw the plots.
You can produce the graphics on your own display device or printer by initializ-
ing the appropriate graphics filter using the zi command. To display output on
a pen plotter, first issue the in command to initialize the plotter, then type ch p ,
which instructs C-PLOT to translate the z commands to pen-plotter p commands.

Each command file begins with zeq9999w followed by a blank line. If you
haven’t already initialized a filter with the zi command, the blank line will cause
the default filter to be used. The e erases the current plot. The q sets quiet
mode. (Quiet mode is necessary with certain display devices, such as a video ter-
minal on a serial interface, to prevent the plot program’s text stream from min-
gling with the filter program’s graphics stream. When plots are directed to the
pen plotter, quiet mode has no effect.) The 9999 resets the colors in the graphics
filter. The w causes the filter to wait for more plotting instructions before restor-
ing text mode or printing the page.

Each command file also issues a reset command, re , at the beginning to put the
plot program into a standard state. An additional command file, doall, will run
all the demos consecutively.

Plane curves
The command file curves displays 12 curves, each in a small window. The data
for the curves is supplied by the user function curves.2, which generates plane
curves using formulas taken from Standard Mathematical Tables (Cleveland,
CRC Press, 1976).

The command file curves calls another command file, curves.p1, which is nested
and is called with four arguments. The first two values specify the location of
the small windows. The next two arguments, each of which is enclosed in
quotes, set the parameters for the function curves.2. The third argument gives
the range of the type 2 user function parametric variable, while the fourth
selects and parameterizes the particular curve.

Demo Files 145

cur ves
@(#)curves 4.3 30 Jun 1993 CSS
Certified Scientific Software’s C-PLOT

Erase, turn on quiet mode, reset filter,
... keep in graphics mode.
zeq9999w

re
Choose symbol
sy L
Turn off numbering
ty +16 +16 .
Turn off tick marks
ty +512 +512 .
Initialize function
fn curves.2 0 360 120 , 1 1
Make little plots
do curves.p1 1 13 "0 360 120" "1 1"
do curves.p1 7 13 "0 180 120" "2 1 0"
do curves.p1 13 13 "0 360 120" "3 1 .5"
do curves.p1 19 13 "0 360 120" "4 1"
do curves.p1 1 7 "-85 85 120" "5 1 90"
do curves.p1 7 7 "-360 360 120" "6 1 -90"
do curves.p1 13 7 "0 360 120" "7 1"
do curves.p1 19 7 "0 360 120" "15 1 3 0"
do curves.p1 1 1 "0 360 120" "9 1 .5"
do curves.p1 7 1 "0 360 120" "10 1"
do curves.p1 13 1 "0 720 120" "11 1 4"
do curves.p1 19 1 "0 720 120" "12 1 0"
Synchronized close
zs

cur ves .p1
@(#)curves.p1 4.1 19 Sep 1992 CSS
Certified Scientific Software’s C-PLOT

Set window
wi $1 $2 5 5
Get points
fn . $3 , $4
Set new axis
np
Draw the points and axis
zap

146 Appendix D

Here are the 12 tiny plots that do.curves produces:

Psychedelic patter ns
The file psych produces randomized patterns in 12 small windows on the page,
using command files very much the same as those in the previous example.

psych
@(#)psych 4.2 03 May 1993 CSS
Certified Scientific Software’s C-PLOT

Erase, turn on quiet mode, reset filter,
... keep in graphics mode.
zeq9999w

re
Choose symbol
sy L
Turn off numbering
ty +16 +16 .
Turn off tick marks
ty +512 +512 .
Initialize function
fn psych.4 1
Make little plots

Demo Files 147

do psych.p1 1 13
do psych.p1 7 13
do psych.p1 13 13
do psych.p1 19 13
do psych.p1 1 7
do psych.p1 7 7
do psych.p1 13 7
do psych.p1 19 7
do psych.p1 1 1
do psych.p1 7 1
do psych.p1 13 1
do psych.p1 19 1
Synchronized close
zs

psych.p1
@(#)psych.p1 4.1 19 Sep 1992 CSS
Certified Scientific Software’s C-PLOT

Set window
wi $1 $2 5 5
Get points
fn .
Set new axis
np
Draw the points and axis
zap

148 Appendix D

Here are the psychedelic patterns that result:

Four ier transfor ms
The command file fft uses the user function calc.4 to generate two different data
sets. The user function fft.4 is invoked to generate the Fourier transform of
each of those sets. Note that the 1,024 data points generated for each curve go
far past the 128 points plotted. The wide range in real space gives high resolu-
tion to the frequency-space Fourier transform.

The first data set generates data that is the sum of three cosine curves of differ-
ing amplitudes and frequencies within a Gaussian envelope:

y = [2 cos (2x) + cos (x/2) + 3 cos (x)] e-(x/64)2 .

The Fourier transform of this data shows three broadened peaks at the appro-
priate frequencies with amplitudes in the correct ratios.

The second data set is simply

y = sin (x)
x

.

Its Fourier transform is a boxcar function.

The range-options command for the x axis, ro x , is used four times within the
command file to set the user-defined tick spacing option. Six lines of input

Demo Files 149

follow each time, representing values for the minimum and the maximum, a
choice not to autorange the y axis, a choice of exact ranges, a choice of user-
defined tick spacing and values for the number of major tick intervals and inter-
mediate tick marks.

fft
@(#)fft 4.2 03 May 1993 CSS
Certified Scientific Software’s C-PLOT

Erase, turn on quiet mode, reset filter,
... keep in graphics mode.
zeq9999w

re
Choose symbol
sy L
Don’t draw y-axis number or tick marks
ty 0 528 0

Set Title
tx t Real Space

Calculate some "real space" data that consists
of three sinusoids broadened by a Gaussian.
fn calc.4 n=1024; x=i/4; \
y=(2*cos(x*2)+cos(x/2)+3*cos(x))*exp(-x*x/(64*64))
Set x-axis range and user-defined tick numbering
ro x
0
128
n
y
y
4 0
Autorange y-axis
np y
Set first window
wi 3 11 8 6
Draw plot
zapt
Set Title
tx t Fourier Transform
Now do FFT
f2 fft.4 n=1024
Set x-axis range and user-defined tick numbering
ro x
0
3
n
y
y
3 0

150 Appendix D

Autorange y-axis
np y
Set second window
wi 14 11 8 6
Draw plot
zapt

Calculate another set of "real space" data
fn . n=1024; x=i+.00001; y = sin(x)/(x)
ro x
0
128
n
y
y
4 0
np y
wi 3 3 8 6
zap
Now do FFT
f2 . n=1024
ro x
0
3
n
y
y
3 0
np y
wi 14 3 8 6
zap
Synchronized close
zs

Demo Files 151

Here are the real-space plots and their Fourier transforms.

Contour plots
The simple command file contour first generates data triples using the user
function calc.4. The calls to the user function are done twice in the example just
for readability. The command file then invokes the contour.4 user function to
create a data set that forms the contour plot when drawn.

contour
@(#)contour 4.2 03 May 1993 CSS
Certified Scientific Software’s C-PLOT

re
Calculate x and y grid
fn calc.4 n=1600; once G=40; once W=2*pi/G; \
x=int(i/G)*W; y=(i%G)*W;

Calculate z values
fn . z=sin(y)*cos(x-y)*exp((-x*x+y*y)*(W*W))
Calculate contour
f2 contour.4 +sgv 15 zmin=-2 zmax=2.5
Use a square window
wi 1

152 Appendix D

Select tighter ranges
ra 0 6 0 6
Use exact ranges
ty 2 2 0
sy L
Plot it
zeq9999w

zzs

Here is the resulting contour plot:

Feature demo
The command file demo demonstrates several of C-PLOT’s plot and text format-
ting features.

demo
@(#)demo 4.2 03 May 1993 CSS
Certified Scientific Software’s C-PLOT

Erase, turn on quiet mode, reset filter,
... keep in graphics mode.
zqe9999w

re

Demo Files 153

sy L
ra 1 1000 0 100
Select types for exact ranges, log x axis
and to draw box around plotting area
ty 10 2 32
wi 5 4 15 12
Select title and labels
tx
MOVE TEXT \uUP\d OR \dDOWN\u
\(rh Special Characters \(lh
\(*a\(*b\(*c\(*d
A bit \v’-3’up\v’5’ down\v‘-2‘
\lBIG\s \T’0’NORM\T’15’ \sSMALL\l
Select key
gk
z Some of the Symbols
0 Circle
1 Square
2 Triangle
12 Star
23 Palm Tree
A Dotted Line
B Short dash
C Long dash
D Dash dot
E Long short
ˆD
Characters sizes
cs
7 2 20
6 2 10
6 3 0
5 2 0
5.5 3 0
4 2 0
Select type to not draw right y axis
ty . . +256
zz

ra y 1 3
tx
\
\
\
Alternate Labels and Numbering
\

Select types to draw only right axis
ty . -3 -256
ty . . +640

zaldk

cs k 4 2

154 Appendix D

zn 9 4
\R’-45’Ro\R’-30’ta\R’-15’te\R’000’ T\R’+15’ex\
\R’+30’t \R’+45’Ro\R’+60’ta\R’+75’te\R’+90’ T\
\R’105’ex\R’120’t \R’135’Ro\R’150’ta\R’165’te\
\R’180’ T\R’195’ex\R’210’t \R’225’Ro\R’240’ta\
\R’255’te\R’270’ T\R’285’ex\R’300’T
ˆD

zs

Here is the resulting graphic:

Demo Files 155

USA map
The data points in the file usa.data include line-control information that tells
C-PLOT whether to continue the line from the previous point or to start a new
line at the current point. The command lc 1 turns the line-control mode on so
that line-control information will be read in with the gd command and used
when plotting the points.

usa_ma p
@(#)usa_map 4.1 19 Sep 1992 CSS
Certified Scientific Software’s C-PLOT

zeq9999w

re
ty 2 2 0
wi 9
sy L
lc 1
gd 2 usa_map.dat
zps

Here is the map:

156 Appendix D

Ma thema tical text
The file eqn demonstrates the special text-formatting sequences available with
C-PLOT. These sequences resemble the standard nroff/troff sequences, for the
most part.

eqns
@(#)eqns 4.2 03 May 1993 CSS
Certified Scientific Software’s C-PLOT

zqe9999w

re
wi 9
cs k 5.5 1.6
zns 1 1
It’s not too difficult to do equations ...

\(rh 5145\(an \(-> 23\(deC\
\ \(*c\d\(pa\u or \(*c\d\(pe\u

x = \u\(lc\b\d\d\(lf\u\
-b \(+- \l\l\(sr\(rn\(rn\(rn\(rn\
\W’-\(sr\(rn\(rn\(rn\(rn’\s\s\ \|b\u\s2\l\d - 4ac\
\ \u\(rc\b\d\d\(rf\u\d\l\l\l/\s\s\s\u2a

\u\u\(lt\b\d\d\(lk\b\d\d\(lb\u\u\
\ \u\u\(lt\s\u\(*p/2\d\W’-\(*p/2’\l\b\d\d\
\(bv\b\d\d\(rb\
\s-\(*p/2\W’--\(*p/2’\l\u\usin(\(*h)d\(*h\
\ \u\u\(rt\b\d\d\(rk\b\d\d\(rb\u\u\ \(mu\
\ \u\u\(lt\s\u\(if\d\W’-\(if’\l\b\d\d\(bv\b\d\d\(rb\
\s0\b\l\u\ue\u\s-x\u\s2\l\d\l\ddx

G(z) = e\u\sln\|G(z)\l\d = \
exp\l\u\u\(lt\b\d\d\(bv\b\d\d\(lb\u\u\s\
\|\|\S’50’\(*S\b\S’-50’\d\d\s\b\|\|\|\|k\(>=1 \
\l\u\u\u\u\|\uS\d\sk\l\uz\u\sk\l\d\d\b\b\b\b\
\(ru\(ru\(ru\(ru\b\b\d\d\dk\u\
\ \l\u\u\(rt\b\d\d\(bv\b\d\d\(rb\u\u\s\
\ = \|\|\S’50’\(*P\b\S’-50’\d\d\s\b\|\|\|k\(>=1\
\ \l\u\ue\u\sS\d\sk\l\uz\u\sk\l\d/k

\ = \l\u\u\(lt\b\d\d\(bv\b\d\d\(lb\u\u\s\
1+S\d\s1\l\uz+ \u\uS\d\s1\b\l\u\u\s2\l\dz\u\s2\l\
\d\d\b\b\b\b\(ru\(ru\(ru\(ru\b\b\d\d\d2!\u\u\
\ +\v’-5’...\v’5’\
\l\u\u\(rt\b\d\d\(bv\b\d\d\(rb\u\u\s\

Demo Files 157

\l\u\u\(lt\b\d\d\(bv\b\d\d\(lb\u\u\s\
1+ \u\uS\d\s2\l\uz\u\s2\l\d\d\
\b\b\b\b\(ru\(ru\(ru\(ru\b\b\d\d\d2\u\u\
\ + \u\uS\d\s2\b\l\u\u\s2\l\dz\u\s4\l\d\d\
\b\b\b\b\(ru\(ru\(ru\(ru\b\b\b\b\
\d\d\d2\u\s2\l\d\v’-5’.\v’5’2!\u\u\
\|+\v’-5’...\v’5’\
\l\u\u\(rt\b\d\d\(bv\b\d\d\(rb\u\u\s\
\v’-5’...\v’5’\

(\(co 1986 Certified Scientific Software)
ˆD

Here are the equations produced by the code contained in this command file:

158 Appendix D

Forests
The command file trees uses the random number function in calc.4 to simulate
one tropical palm grove, two temperate forests with deciduous foliage and one
conifer-populated forest.

trees
@(#)trees 4.1 19 Sep 1992 CSS
Certified Scientific Software’s C-PLOT

zeq9999w

re
Select no ticks and no numbers
ty 528 528 0
cs s 10
ra 0 10 0 10
za
Generate 30 random points between 0,0 and 5,5
fn calc.4 n=30; x=rand(5); y=rand(5);
sy 24
zp
fn . x=rand(5)+5; y=rand(5);
sy 25
zp
fn . x=rand(5); y=rand(5)+5;
sy 26
zp
fn . x=rand(5)+5; y=rand(5)+5;
sy 23
zp
zs

Demo Files 159

Here is the resulting graphic:

Pen number s
C-PLOT’s conventions for numbering pens is described in the next section. The
conventions allow command files to produce consistent plots with any conform-
ing C-PLOT graphics filters.

The command file pens uses a range of pen numbers to change filled-symbol col-
oring and line widths.

pens
@(#)pens 4.2 03 May 1993 CSS
Certified Scientific Software’s C-PLOT

zeq9999w

re
zw
wi 9
sy 0
ra 0 9 .2 10
ty 2 2 0
cs k 8
ft 2

160 Appendix D

zn 0 10u
\C\T’20’Pen Numbering Demonstration
ˆD
zn 0 9.1u
\s "White" Filled Symbols \h’6’Line Widths\
\ \u"Black" Filled Symbols
\s\h’435’\u+ Outline Widths
ˆD

do pens.p1 1000 0 8u
do pens.p1 1001 0 7u
do pens.p1 1002 0 6u
do pens.p1 1003 0 5u
do pens.p1 1004 0 4u
do pens.p1 1005 0 3u
do pens.p1 1006 0 2u
do pens.p1 1007 0 1u
do pens.p1 1008 0 0u

do pens.p1 1009 2 8u
do pens.p1 1010 2 7u
do pens.p1 1011 2 6u
do pens.p1 1012 2 5u
do pens.p1 1013 2 4u
do pens.p1 1014 2 3u
do pens.p1 1015 2 2u
do pens.p1 1016 2 1u
do pens.p1 1017 2 0u

do pens.p2 4000 4 8u
do pens.p2 4005 4 7u
do pens.p2 4010 4 6u
do pens.p2 4020 4 5u
do pens.p2 4030 4 4u
do pens.p2 4040 4 3u
do pens.p2 4060 4 2u
do pens.p2 4080 4 1u
do pens.p2 4100 4 0u

z9999

do pens.p3 2001+5000 6 8u
do pens.p3 2001+5010 6 7u
do pens.p3 2001+5040 6 6u
do pens.p3 2005+5000 6 5u
do pens.p3 2005+5010 6 4u
do pens.p3 2005+5040 6 3u
do pens.p3 2002+5000 6 2u
do pens.p3 2002+5010 6 1u
do pens.p3 2002+5040 6 0u

zs

Demo Files 161

pens .p1
@(#)pens.p1 4.1 19 Sep 1992 CSS
Certified Scientific Software’s C-PLOT

z$1n $2 $3
\v’3’\S’+50’\[00\S’-50’\v’-3’$1
ˆD

pens .p2
@(#)pens.p2 4.1 19 Sep 1992 CSS
Certified Scientific Software’s C-PLOT

z$1n $2 $3
\h’-6’\v’-3’*D\v’+3’\h’6’$1
\r\h’-6’\v’+3’*L\v’-3’\h’6’
ˆD

pens .p3
@(#)pens.p3 4.1 19 Sep 1992 CSS
Certified Scientific Software’s C-PLOT

z$1n $2 $3
\v’3’\S’+50’\[04\h’-9’\[04\S’-50’\v’-3’$1
ˆD

The appearance of the plot drawn with this command file will vary depending on
the graphics filter being used. Not all pen numbers are functional on all graph-
ics filters. The following picture is produced by running the command file with
the PostScript graphics filter:

162 Appendix D

Demo Files 163

164 Appendix D

Appendix E Wr iting User Functions

Rules for writing type 1 to 4 C-PLOT user functions are explained in this
appendix. Rules for writing type 5 user functions, the fits, are discussed in the
second half of Chapter 12.

For type 1 user functions, you provide a routine to produce values for the depen-
dent variable y as a function of the independent variable x. The values of x
passed to your routine are determined by the ranges you enter with the fn com-
mand. The values for x error bars, y error bars and z are set to 0. Type 1 users
functions are not useful in 3D mode. In type 2 user functions, you provide rou-
tines to produce values for all four C-PLOT variables, x, y, r and s in 2D mode
and x, y, z and s in 3D mode, as a function of the parametric variable whose
range you also supply with the fn command. For type 3 user functions, no range
information is used. Instead, you provide routines to calculate new values for
the four variables based on their current values.

For the first three types of user functions, you provide routines to calculate val-
ues for a single data point coordinate at a time. These routines are repeatedly
called by the overhead module routines. With type 4 user functions, the over-
head module makes one call to the routine you provide. You supply the code
necessary to create or modify the entire data set.

With each of these four types of user functions, you can set many of the display
options for the plot, including the title, labels, symbol, key and axis ranges.
Each of these user function requires you to provide a routine named setup()
that will be called once. For type 1 to 3 user functions, this is where the display
options would be set.

Wr iting User Functions 165

Compiling user functions
Normally you run the shell script $CPLOTHOME/bin/makefunc from the function
directory to compile your user functions. That file usually invokes the C com-
piler to compile your module and link it with the appropriate overhead modules.
If your user function contains the string cplot_compile: followed by commands
to compile your function, those commands are used instead of the default com-
mands from makefunc. The commands can refer to the make utility or invoke
the C compiler directly. Possible ways of including the information in a function
source file are:

/*
* cplot_compile: make my_func.5
*/

or
#if 0

cplot_compile: make my_func.5
#endif

Accessing and modifying the data structure passed to and from the plot program
is simplified by a set of macros that is brought into your program with the line of
code,

#include <p_funct.h>

This include file also includes another, p_plot.h, that describes the above-men-
tioned data structure. Both include files are found in the directory
$CPLOTHOME/include.

Te xt and labels

The following macros set the text that would be entered interactively using the
tx command.

Name What it Does

set_title(s) Assigns string s to title
set_xlabel(s) Assigns string s to x-axis label
set_xunits(s) Assigns string s to x-axis units
set_ylabel(s) Assigns string s to y-axis label
set_yunits(s) Assigns string s to y-axis units
set_zlabel(s) Assigns string s to z-axis label
set_zunits(s) Assigns string s to z-axis units

166 Appendix E

For example,
set_title("Plot Of Very Interesting Results");
set_xlabel("Radius");
set_xunits("cm");
set_ylabel("Intensity");
set_yunits(""); /* No y units */

Strings not explicitly assigned retain their previous contents. The manifest con-
stant TEXT_LEN is defined in the include files and contains the maximum num-
ber of characters allowed in any text strings.

Error-bar, line-control and orienta tion modes

Error-bar, line-control and orientation modes can be turned on or off, or you can
determine if they are already on or off, with these macros. Within the plot pro-
gram, the commands eb , lc and tu control these modes.

Name What it Does

xb_on() Turn x error-bar mode on
xb_off() Turn x error-bar mode off
is_xb() Value is nonzero if x error-bar mode is on
yb_on() Turn y error-bar mode on

yb_off() Turn y error-bar mode off
is_yb() Value is nonzero if y error-bar mode is on
z_on() Turn z error-bar mode on

z_off() Turn z error-bar mode off
is_zb() Value is nonzero if z error-bar mode is on
lc_on() Turn line-control mode on

lc_off() Turn line-control mode off
is_lc() Value is nonzero if line-control mode is on
tu_on() Turn portrait mode on
tu_off() Turn portrait mode off (plot in landscape mode)
is_tu() Value is nonzero if portrait mode is on

Wr iting User Functions 167

These macros set the current plotting symbol and create or modify the symbol
and text in the key. The commands sy and gk perform the same function within
the plot program.

Name What it Does

set_sym(sym) Assign code in sym to plotting symbol
set_key(i, sym, s) Assign ith line of the key the symbol

sym and the string s

The symbol is coded in the low-order 16 bits of an (unsigned) integer. In the fol-
lowing description, these bits are numbered from 0 to 15, with bit 0 being the
least significant (ones) bit.

If bit 7 is set, the code is for a line symbol and bits 0-6 contain the ASCII value of
the corresponding upper-case letter.

set_sym(0x80|’L’); /* Solid line */
set_sym(0x80|’A’); /* Dotted line */

If some of bits 0-6 are set but none of bits 8-14, the code contained in bits 0-6 is
one greater than the corresponding code for one of the special symbols.

set_sym(1+0); /* Code 0, an open circle */
set_sym(1+23); /* Code 23, a palm tree */

If some of bits 8-14 are set but none of bits 0-6, the code contained in bits 8-14
(shifted down 8 bits) is the ASCII value of the character to be used as the symbol.

set_sym(’+’<<8); /* A plus sign */
set_sym(’X’<<8); /* An upper-case x */

If both some of bits 0-6 and some of bits 8-14 are set, the two ASCII characters
represented are the two-letter code for one of the special characters used by
C-PLOT.

set_sym(’*’|’a’<<8); /* The \(*a, alpha character */
set_sym(’d’|’d’<<8); /* The \(dd, double dagger */

Finally, when assigned to a symbol used in the key, if bit 15 is set, the program
pauses when drawing the key on a pen plotter to allow the user to change pens.
(See the c option in gk .)

The set_key() macro can be used to assign each element of the key. The second
argument contains the coded symbol using the conventions described above.
The second argument should be set to zero to mark the last element of the key.

set_key(0, 1+0, "Data"); /* 0, open circle */
set_key(1, 0x80|’L’, "Fit"; /* ’L’, solid line */
set_key(2, 0, ""); /* mark end with sym=0 */

The manifest constant KEY_LEN is defined to be the maximum length of the key
labels (including the terminating null byte). The constant NUMKEYS is the

168 Appendix E

number of key entries allowed. If using all NUMKEYS entries, it is not necessary
to mark the last entry with a null symbol.

Plot type and logar ithmic axes

The plot-type parameters control many of the features of the plot and are set
within the plot program using the ty command.

Name What it Does

set_xtype(t) Assigns t to the x-axis plot type
set_ytype(t) Assigns t to the y-axis plot type
set_ztype(t) Assigns t to the z-axis plot type
set_gtype(t) Assigns t to the overall plot type

xlog_on() Make the x-axis logarithmic
xlog_off() Make the x-axis linear
is_xlog() Value is nonzero if x-axis is logarithmic
ylog_on() Make the y-axis logarithmic
ylog_off() Make the y-axis linear
is_ylog() Value is nonzero if y-axis is logarithmic
zlog_on() Make the z-axis logarithmic

zlog_off() Make the z-axis linear
is_zlog() Value is nonzero if z-axis is logarithmic

The values to assign to the plot types in the above macros are the same values
used within the plot program. The macros to set or unset logarithmic axes sim-
ply add the appropriate values to the plot type.

Wr iting User Functions 169

Axis ranges

The minimum and maximum values of each axis can be set from within the user
function just as with the range axis command, ra . You also can have either or
both axes auto-ranged by the plot program in a manner similar to the new
points command, np .

Name What it Does

new_points() Axis ranges set from current data
new_xpoints() x-axis ranges set from current data
new_ypoints() y-axis ranges set from current data
new_zpoints() z-axis ranges set from current data
set_xmin(x) Set x-axis minimum to x
set_xmax(x) Set x-axis maximum to x
set_ymin(y) Set y-axis minimum to y
set_ymax(y) Set y-axis maximum to y
set_zmin(z) Set z-axis minimum to z
set_zmax(z) Set z-axis maximum to z
get_xmin() Value is x-axis minimum
get_xmax() Value is x-axis maximum
get_ymin() Value is y-axis minimum
get_ymax() Value is y-axis maximum
get_zmin() Value is z-axis minimum
get_zmax() Value is z-axis maximum

The automatic ranging of the axes using the first three macros won’t take effect
until the function returns to the plot program, so the macros to retrieve the axis
extremes will return the values contained on entry to the user function or set in
the current invocation of the user function.

Plot and page window coordina tes

The coordinates of the plot window are available in both internal and data units.
You might use the internal units to obtain the aspect ratio of the plot window,
useful, for example, if you are writing a user function to generate data points to
draw arrows.

The macros only provide the page-size coordinates in internal units. The corre-
sponding data-unit values can be readily obtained using ratios with the values
for the plot window coordinates.

None of the values for these coordinates can be changed within a user function.
The values for the plot window coordinates are changed with the wi command

170 Appendix E

within the plot program. The page-window coordinates may change only if other
than the default HP-GL plotter is initialized with the in command.

Name What it Does

get_dx0() Plot-window x minimum in data units
get_dy0() Plot-window y minimum in data units
get_dz0() Plot-window z minimum in data units
get_dx1() Plot-window x maximum in data units
get_dy1() Plot-window y maximum in data units
get_dz1() Plot-window z minimum in data units

get_xdel() Plot window x range in data units
get_ydel() Plot window y range in data units
get_zdel() Plot window z range in data units
get_wx0() Plot-window x minimum in internal units
get_wy0() Plot-window y minimum in internal units
get_wx1() Plot-window x maximum in internal units
get_wy1() Plot-window y maximum in internal units
get_px0() Page-window x minimum in internal units
get_py0() Page-window y minimum in internal units
get_px1() Page-window x maximum in internal units
get_py1() Page-window y maximum in internal units

The following sample code generates data coordinates x and y associated with
arbitrary internal unit coordinates cx and cy, taking into account whether the
plot window is in portrait or landscape mode and whether or not the axes are
using logarithmic scaling. Such a transformation would be useful when writing
a user function that moves cross hairs over a screen containing a plot drawn by
a C-PLOT filter.

if (is_tu()) {
x = get_dx0() + get_xdel() * (cy - get_wy0()) / (get_wy1() - get_wy0());
y = get_dy0() + get_ydel() * (get_wx1() - cx) / (get_wx1() - get_wx0());

} else {
x = get_dx0() + get_xdel() * (cx - get_wx0()) / (get_wx1() - get_wx0());
y = get_dy0() + get_ydel() * (cy - get_wy(0)) / (get_wy1() - get_wy0());

}
if (is_xlog())

x = pow(10., x);
if (is_ylog())

y = pow(10., y);

If the range-changing macros are used to modify the range values within a user
function, the above macros will continue to report the original values of the plot
window data coordinates until the function is reinvoked after returning to the
plot program.

Wr iting User Functions 171

Number of points

You must explicitly set the total number of points if it is changed in a type 4
user function. Use the following macro to do so. Don’t try to change the number
of points in types 1 to 3 functions.

Name What it Does

set_npts(n) Set the number of points to n
get_npts() Value is the current number of points

Miscellaneous macros

These macros provide some status information and allow you to break the plot
program out of a command file if that is appropriate.

Name What it Does

is_bgnd() Nonzero if running in the background
is_quiet() Nonzero if quiet mode is on (see zq)

get_fun_num() Value is function number, as in f1, f2, f3
set_error() When function returns, plot program re-

sets to command level

The last macro sets a flag that makes the plot program behave just as if the user
typed ˆC at the keyboard, but the action doesn’t occur until the user function
returns control to the plot program.

For example, if the user function is reading a data file and has reached the end
of that file, you might have code such as,

user4() {
...
if (fgets(buf, 128, fd) == NULL) {

printf("Reached end of file.\n");
set_error();
return;

}
...

}

172 Appendix E

Setting and retr ieving data points

The following macros are only relevant with type 4 user functions. Since C-PLOT
may keep data points in temporary files, access to the points is through func-
tions rather than a static array. The functions, described later, require the
address of the C-PLOT data structure, which is named Point . Within your C
code, you declare storage for one of these structures and access it through the
following macros, which also require the address of the storage of the Point .

Name What it Does

set_x(p, x) Assign x to Point whose address is p
set_y(p, y) Assign y to Point whose address is p
set_z(p, z) Assign z to Point whose address is p
set_r(p, r) Assign r to Point whose address is p
set_s(p, s) Assign s to Point whose address is p

set_up_pen(p) Assign up line control to Point whose address is p
set_down_pen(p) Assign down line control to Point whose address is p

get_x(p) Value is x of Point whose address is p
get_y(p) Value is y of Point whose address is p
get_z(p) Value is z of Point whose address is p
get_r(p) Value is r of Point whose address is p
get_s(p) Value is s of Point whose address is p

get_pen(p) Value is non-zero if Point has up line control

Wr iting User Functions 173

The following functions provide the interface between your code and the rou-
tines in the overhead modules.

Da ta genera tion

These are the routines you provide that will be called by the overhead module
routines.

Name What it Does

setup() Called once each time user function is invoked
user(x) Returns value for y in a type 1 function

user_x(t) Returns value for x in a type 2 function
user_y(t) Returns value for y in a type 2 function
user_sx(t) Returns value for r in a type 2 function
user_sy(t) Returns value for s in a type 2 function

user_x(x, y, r, s) Returns value for x in a type 3 function
user_y(x, y, s) Returns value for y in a type 3 function
user_sx(x, y, s) Returns value for r in a type 3 function

user_sy(x, y, r, s) Returns value for s in a type 3 function
user_4() Called once in a type 4 function

In 3D mode, replace r with z.

All the functions except setup() return values of type double . The arguments
are all of type double . All but user4() are called once for each data point. The
argument t is the parametric variable in the type 2 user functions. Otherwise,
the arguments are the values of the appropriate coordinate of the current data
point. In type 2 and 3 user functions, if you wish to keep the current value of a
coordinate, simply return the argument.

174 Appendix E

Getting command line options and keyboard input

Several subroutines are provided to simplify dialogue with the user of your
C-PLOT user functions. Type 1 to 4 user functions do not read from a C-PLOT
command file. To control the options within a user function when running from
command files, extract fn command-line arguments using the get_cmdbuf() or
get_args() routines provided. When the user function is run interactively the
three get_?num() functions provide a convenient way of obtaining options from
the keyboard.

Name What it Does

get_cmdbuf(b) Copy command line to character buffer b
get_args(fmt [, ptr ...]) Scan command line for arguments

get_dnum(prompt, dptr) Input double from keyboard
get_inum(prompt, iptr) Input integer from keyboard
get_snum(prompt, sptr) Input string from keyboard

In the above function calls, b , fmt , prompt and sptr are type (char *) , dptr is
type (double *) and iptr is type (int *) . The optional arguments to
get_args() are all pointers with their type depending on the contents of the fmt
string. There can be no more than 26 of these pointers.

The size of the character buffer b used in get_cmdbuf() should be at least
CMD_LEN bytes, where CMD_LEN is a manifest constant that is declared in the
include files.

To clarify, here are examples of the usage of these functions. For get_args() ,
the rules for fmt , the optional pointers and the return value are just as they are
for the standard sscanf() routine in the C library. If a function is invoked from
the plot program as

fn name.1 arg1 arg2 arg3 arg4 ...

the scanning specified by format begins at arg1 . Here is an example
setup() {

int args;
double p1, p2;

args = get_args("%lf %lf", &p1, &p2);
...

}

For each of the last three routines in the above table, prompt , if nonzero, should
point to a string that will be printed along with the current value of what is
pointed to by the second argument. When the routine is called, a line of text will
be read from the keyboard and scanned for something to stuff into the location
pointed to by the second argument. If no appropriate object is found on the line

Wr iting User Functions 175

of text, the contents of the location pointed to by the second argument remain
unchanged. For the following code,

{
static char file[64] = "data";
static double temp = 98.6;

get_snum("What file", file);
get_dnum("What temperature", &temp);
...

}

the output is
What file (data)? <return>
What temperature (98.6)? <return>

The return values for each of these three functions are 1 if the user simply hits
return, 0 if the user types some input and −1 on end-of-file (the user hit a ˆD).

Getting and setting data points

In order to transfer information about a data point between your code and the
overhead modules with type 4 user functions, these built-in routines are avail-
able

Name What it Does

pt_get(p, i) Fetches data point i into
Point whose address is p

pt_set(p, i) Sets data point i from
Point whose address is p

The following code fragment sets the x and y values for 100 points. The error-
bar value and line-control state only need to be set once since the same storage
for the Point is reused each time.

{
Point pt; /* Declare storage */

set_s(&pt, 0); /* Error bar = 0 */
set_down_pen(&pt); /* Set pen down */
for (i=0; i<100; i++) {

set_x(&pt, i); /* x = i */
set_y(&pt, i*i); /* y = i * i */
pt_set(&pt, i); /* Set values */

}
set_npts(i); /* Set number of points */
new_points(); /* New ranges */

}

176 Appendix E

Getting and setting auxiliary data arrays

The user function overhead modules also provide you with a method of storing
auxiliary data arrays that have the same number of elements as there are data
points. This auxiliary data is also kept in a temporary file if there is not enough
room in program memory.

The following functions handle the file control.

Name What it Does

fpt_init(ptr, size) ptr points to static storage of
size bytes

fpt_get(i) Fetch the ith element
fpt_set(i) Set the ith element
fpt_fini() Bring the temporary file up to date

The function fpt_init() is used to initialize the auxiliary storage routine. You
supply it with a pointer to the data structure you are using and tell it how big
that structure is. The fpt_get() and fpt_set() routines then use that storage
you have allocated to transfer the data in and out.

For example,
{

Point pt;
static struct aux {

float a_1;
float a_2;
float a_3;

} aux;
static once;
...
if (!once) {

/* Initialize storage just once */
fpt_init(&aux, sizeof(aux));
once++;

}
for (i = 0; i get_npts(); i++) {

pt_get(&pt, i);
aux.a_1 = get_x(&pt);
aux.a_2 = get_x(&pt) * 2;
aux.a_3 = get_x(&pt) * 3;
fpt_set(i);

}
fpt_fini();
...

}

fpt_init() can be called more than once to reinitialize the storage, perhaps
using a different data structure. Every time it is called, though, the previously

Wr iting User Functions 177

stored numbers are wiped out. Call it just once and the values stored will be
retained over successive invocations of the user function when it is reinvoked
with the fn . syntax.

Quitting the function

The following function is used for handling serious errors. It uses the
longjmp() C-library routine to jump to the overhead module code that returns
control to the plot program. It also performs the set_error() command,
described earlier, so that the plot program returns to command level.

Name What it Does

quit_func() Immediately return control to the plot program

The following function and variable names are reserved.

dtof fpt_pos pdata pt_pos

back_gnd old_point pl sa

cintflag oncint point xa

fintflag onfint prnt_point ya

178 Appendix E

